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Bioinformatics Toolbox Product Description
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Read, analyze, and visualize genomic and proteomic data

Bioinformatics Toolbox provides algorithms and apps for Next Generation Sequencing
(NGS), microarray analysis, mass spectrometry, and gene ontology. Using toolbox
functions, you can read genomic and proteomic data from standard file formats such

as SAM, FASTA, CEL, and CDF, as well as from online databases such as the NCBI
Gene Expression Omnibus and GenBank®. You can explore and visualize this data

with sequence browsers, spatial heatmaps, and clustergrams. The toolbox also provides
statistical techniques for detecting peaks, imputing values for missing data, and selecting
features.

You can combine toolbox functions to support common bioinformatics workflows. You can
use ChIP-Seq data to identify transcription factors; analyze RNA-Seq data to identify
differentially expressed genes; identify copy number variants and SNPs in microarray
data; and classify protein profiles using mass spectrometry data.

Key Features

*  Next Generation Sequencing analysis and browser

* Sequence analysis and visualization, including pairwise and multiple sequence
alignment and peak detection

*  Microarray data analysis, including reading, filtering, normalizing, and visualization

*  Mass spectrometry analysis, including preprocessing, classification, and marker
identification

* Phylogenetic tree analysis
*  Graph theory functions, including interaction maps, hierarchy plots, and pathways

+ Data import from genomic, proteomic, and gene expression files, including SAM,
FASTA, CEL, and CDF, and from databases such as NCBI and GenBank



Product Overview

Product Overview

In this section...

“Features” on page 1-3

“Expected Users” on page 1-4

Features

The Bioinformatics Toolbox product extends the MATLAB® environment to provide

an integrated software environment for genome and proteome analysis. Scientists and
engineers can answer questions, solve problems, prototype new algorithms, and build
applications for drug discovery and design, genetic engineering, and biological research.
An introduction to these features will help you to develop a conceptual model for working
with the toolbox and your biological data.

The Bioinformatics Toolbox product includes many functions to help you with genome
and proteome analysis. Most functions are implemented in the MATLAB programming
language, with the source available for you to view. This open environment lets you
explore and customize the existing toolbox algorithms or develop your own.

You can use the basic bioinformatic functions provided with this toolbox to create more
complex algorithms and applications. These robust and well-tested functions are the
functions that you would otherwise have to create yourself.

Toolbox features and functions fall within these categories:
+ Data formats and databases — Connect to Web-accessible databases containing
genomic and proteomic data. Read and convert between multiple data formats.

+ High-throughput sequencing — Gene expression and transcription factor analysis
of next-generation sequencing data, including RNA-Seq and ChIP-Seq.

+ Sequence analysis — Determine the statistical characteristics of a sequence, align
two sequences, and multiply align several sequences. Model patterns in biological
sequences using hidden Markov model (HMM) profiles.

* Phylogenetic analysis — Create and manipulate phylogenetic tree data.
* Microarray data analysis — Read, normalize, and visualize microarray data.

*+ Mass spectrometry data analysis — Analyze and enhance raw mass spectrometry
data.

1-3
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Statistical learning — Classify and identify features in data sets with statistical
learning tools.

Programming interface — Use other bioinformatic software (BioPerl and BioJava)
within the MATLAB environment.

The field of bioinformatics is rapidly growing and will become increasingly important as
biology becomes a more analytical science. The toolbox provides an open environment
that you can customize for development and deployment of the analytical tools you will
need.

Prototype and develop algorithms — Prototype new ideas in an open and
extensible environment. Develop algorithms using efficient string processing and
statistical functions, view the source code for existing functions, and use the code as a
template for customizing, improving, or creating your own functions. See “Prototyping
and Development Environment” on page 1-24.

Visualize data — Visualize sequences and alignments, gene expression data,
phylogenetic trees, mass spectrometry data, protein structure, and relationships
between data with interconnected graphs. See “Data Visualization” on page 1-25.

Share and deploy applications — Use an interactive GUI builder to develop
a custom graphical front end for your data analysis programs. Create standalone
applications that run separately from the MATLAB environment. See “Algorithm
Sharing and Application Deployment” on page 1-26.

Expected Users

The Bioinformatics Toolbox product is intended for computational biologists and research
scientists who need to develop new algorithms or implement published ones, visualize
results, and create standalone applications.

Industry/Professional — Increasingly, drug discovery methods are being supported
by engineering practice. This toolbox supports tool builders who want to create
applications for the biotechnology and pharmaceutical industries.

Education/Professor/Student — This toolbox is well suited for learning and
teaching genome and proteome analysis techniques. Educators and students can
concentrate on bioinformatic algorithms instead of programming basic functions such
as reading and writing to files.

While the toolbox includes many bioinformatic functions, it is not intended to be a
complete set of tools for scientists to analyze their biological data. However, the MATLAB
environment is ideal for rapidly designing and prototyping the tools you need.
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Installation

In this section...

“Installing” on page 1-5

“Required Software” on page 1-5
“Optional Software” on page 1-5

Installing

Install the Bioinformatics Toolbox software from a DVD or Web release using the

MathWorks® Installer.

Required Software

The Bioinformatics Toolbox software requires the following MathWorks products to be

installed on your computer.

Required Software

Description

MATLAB

Provides a command-line interface and integrated software
environment for the Bioinformatics Toolbox software.

Bioinformatics Toolbox software requires the current
version of MATLAB.

Statistics and Machine
Learning Toolbox™

Provides basic statistics and probability functions used by
the Bioinformatics Toolbox software.

Bioinformatics Toolbox software requires the current
version ofStatistics and Machine Learning Toolbox.

Optional Software

MATLAB and the Bioinformatics Toolbox software environment is open and extensible.
In this environment you can interactively explore ideas, prototype new algorithms,

and develop complete solutions to problems in bioinformatics. MATLAB facilitates
computation, visualization, prototyping, and deployment.

1-5
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Using the Bioinformatics Toolbox software with other MATLAB toolboxes and products
will allow you to do advanced algorithm development and solve multidisciplinary

problems.

Optional Software

Description

Parallel Computing
Toolbox™

Perform parallel bioinformatic computations on multicore
computers and computer clusters. For an example of batch
processing through parallel computing, see the Batch
Processing of Spectra Using Distributed Computing.

Signal Processing
Toolbox™

Process signal data from bioanalytical instrumentation.
Examples include acquisition of fluorescence data for
DNA sequence analyzers, fluorescence data for microarray
scanners, and mass spectrometric data from protein
analyses.

Image Processing
Toolbox™

Create complex and custom image processing algorithms
for data from microarray scanners.

SimBiology®

Model, simulate, and analyze biochemical systems.

Optimization Toolbox™

Use nonlinear optimization to predict the secondary
structure of proteins and the structure of other biological
macromolecules.

Neural Network
Toolbox™

Use neural networks to solve problems where algorithms
are not available. For example, you can train neural
networks for pattern recognition using large sets of
sequence data.

Database Toolbox™

Create your own in-house databases for sequence data with
custom annotations.

MATLAB Compiler™

Create standalone applications from MATLAB GUI
applications, and create dynamic link libraries from
MATLAB functions to use with any programming
environment.

MATLAB Compiler
SDK™

Create COM objects to use with any COM-based
programming environment.

MATLAB Compiler SDK

Integrate MATLAB applications into your organization's

Java® programs by creating a Java wrapper around the
application.




Installation

Optional Software

Description

MATLAB Compiler

Create Microsoft® Excel® add-in functions from MATLAB
functions to use with Excel spreadsheets.

Spreadsheet Link™

Connect Microsoft Excel with the MATLAB Workspace
to exchange data and to use MATLAB computational
and visualization functions. For more information, see
“Exchange Bioinformatics Data Between Excel and
MATLAB” on page 1-27.

1-7
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The Bioinformatics Toolbox accesses many of the databases on the Web and other online
data sources. It allows you to copy data into the MATLAB Workspace, and read and write
to files with standard bioinformatic formats. It also reads many common genome file
formats, so that you do not have to write and maintain your own file readers.

Web-based databases — You can directly access public databases on the Web and copy
sequence and gene expression information into the MATLAB environment.

The sequence databases currently supported are GenBank (getgenbank), GenPept
(getgenpept), European Molecular Biology Laboratory (EMBL) (getembl), and Protein
Data Bank (PDB) (getpdb). You can also access data from the NCBI Gene Expression
Omnibus (GEO) Web site by using a single function (getgeodata).

Get multiply aligned sequences (gethmmal ignment), hidden Markov model profiles
(gethmmpro¥), and phylogenetic tree data (gethmmtree) from the PFAM database.

Gene Ontology database — Load the database from the Web into a gene ontology
object (geneont). Select sections of the ontology with methods for the geneont object
(geneont.getancestors, geneont.getdescendants, geneont.getmatrix, geneont.getrelatives),
and manipulate data with utility functions (goannotread, num2goid).

Read data from instruments — Read data generated from gene sequencing
instruments (scfread, joinseq, traceplot), mass spectrometers (Jcampread), and

Agilent®™ microarray scanners (agferead).

Reading data formats — The toolbox provides a number of functions for reading data
from common bioinformatic file formats.

+ Sequence data: GenBank (genbankread), GenPept (genpeptread), EMBL
(emblread), PDB (pdbread), and FASTA (fastaread)
*  Multiply aligned sequences: ClustalW and GCG formats (nultial ignread)

*  Gene expression data from microarrays: Gene Expression Omnibus (GEO) data
(geosoftread), GenePix"” data in GPR and GAL files (gprread, galread), SPOT
data (sptread), Affymetrix® GeneChip® data (affyread), and ImaGene® results files
(imageneread)

* Hidden Markov model profiles: PFAM-HMM file (pfamhmmread)



Data Formats and Databases

Writing data formats — The functions for getting data from the Web include the option
to save the data to a file. However, there is a function to write data to a file using the
FASTA format (Fastawrite).

BLAST searches — Request Web-based BLAST searches (blastncbi), get the results

from a search (getblast) and read results from a previously saved BLAST formatted
report file (blastread).

The MATLAB environment has built-in support for other industry-standard file formats
including Microsoft Excel and comma-separated-value (CSV) files. Additional functions
perform ASCII and low-level binary I/0, allowing you to develop custom functions for
working with any data format.

More About

. “High-Throughput Sequencing”

. “Microarray Analysis”

. “Sequence Analysis”

. “Structural Analysis”

. “Mass Spectrometry and Bioanalytics”

1-9
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You can select from a list of analysis methods to compare nucleotide or amino acid
sequences using pairwise or multiple sequence alignment functions.

Pairwise sequence alignment — Efficient implementations of standard algorithms
such as the Needleman-Wunsch (nwal ign) and Smith-Waterman (swal ign) algorithms
for pairwise sequence alignment. The toolbox also includes standard scoring matrices
such as the PAM and BLOSUM families of matrices (blosum, dayhoff, gonnet, nuc44,
pam). Visualize sequence similarities with seqdotplot and sequence alignment results
with showal ignment.

Multiple sequence alignment — Functions for multiple sequence alignment
(multialign, profalign) and functions that support multiple sequences
(multialignread, fastaread, showal ignment). There is also a graphical interface
(segalignviewer) for viewing the results of a multiple sequence alignment and
manually making adjustment.

Multiple sequence profiles — Implementations for multiple alignment and

profile hidden Markov model algorithms (gethmmprof, gethmmal ignment,
gethmmtree, pfamhmmread, hmmprofalign, hmmprofestimate, hmmprofgenerate,
hmmprofmerge, hmmprofstruct, showhmmprof).

Biological codes — Look up the letters or numeric equivalents for commonly used
biological codes (aminolookup, baselookup, geneticcode, revgeneticcode).

More About

. “Sequence Utilities and Statistics” on page 1-11
. “Sequence Analysis”

. “Data Formats and Databases” on page 1-8
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Sequence Utilities and Statistics

You can manipulate and analyze your sequences to gain a deeper understanding of the
physical, chemical, and biological characteristics of your data. Use a graphical user
interface (GUI) with many of the sequence functions in the toolbox (seqviewer).

Sequence conversion and manipulation — The toolbox provides routines for common
operations, such as converting DNA or RNA sequences to amino acid sequences, that

are basic to working with nucleic acid and protein sequences (aa2int, aa2nt, dna2rna,
rna2dna, int2aa, int2nt, nt2aa, nt2int, seqcomplement, seqrcomplement,
seqgreverse).

You can manipulate your sequence by performing an in silico digestion with restriction
endonucleases (restrict) and proteases (cleave).

Sequence statistics — Determine various statistics about a sequence (aacount,
basecount, codoncount, dimercount, nmercount, ntdensity, codonbias,
cpgisland, oligoprop), search for specific patterns within a sequence (seqshowwords,
seqgwordcount), or search for open reading frames (seqshoworfs). In addition, you can
create random sequences for test cases (randseq).

Sequence utilities — Determine a consensus sequence from a set of multiply aligned
amino acid, nucleotide sequences (seqconsensus, or a sequence profile (seqprofile).
Format a sequence for display (seqdisp) or graphically show a sequence alignment with
frequency data (seqlogo).

Additional MATLAB functions efficiently handle string operations with regular
expressions (regexp, seg2regexp) to look for specific patterns in a sequence and search
through a library for string matches (segmatch).

Look for possible cleavage sites in a DNA/RNA sequence by searching for palindromes
(palindromes).

More About

. “Sequence Alignments” on page 1-10

. “Sequence Analysis”

. “Protein and Amino Acid Sequence Analysis”
. “Data Formats and Databases” on page 1-8
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Protein Property Analysis

You can use a collection of protein analysis methods to extract information from

your data. You can determine protein characteristics and simulate enzyme cleavage
reactions. The toolbox provides functions to calculate various properties of a protein
sequence, such as the atomic composition (atomiccomp), molecular weight (molweight),
and isoelectric point (isoelectric). You can cleave a protein with an enzyme

(cleave, rebasecuts) and create distance and Ramachandran plots for PDB data
(pdbdistplot, ramachandran). The toolbox contains a graphical user interface for
protein analysis (proteinplot) and plotting 3-D protein and other molecular structures
with information from molecule model files, such as PDB files (molviewer).

Amino acid sequence utilities — Calculate amino acid statistics for a sequence
(aacount) and get information about character codes (aminolookup).

More About
. “Protein and Amino Acid Sequence Analysis”
. “Structural Analysis”

1-12
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Phylogenetic Analysis

Phylogenetic analysis is the process you use to determine the evolutionary relationships
between organisms. The results of an analysis can be drawn in a hierarchical diagram
called a cladogram or phylogram (phylogenetic tree). The branches in a tree are based
on the hypothesized evolutionary relationships (phylogeny) between organisms. Each
member in a branch, also known as a monophyletic group, is assumed to be descended
from a common ancestor. Originally, phylogenetic trees were created using morphology,
but now, determining evolutionary relationships includes matching patterns in nucleic
acid and protein sequences. The Bioinformatics Toolbox provides the following data
structure and functions for phylogenetic analysis.

Phylogenetic tree data — Read and write Newick-formatted tree files (phytreeread,
phytreewrite) into the MATLAB Workspace as phylogenetic tree objects (phytree).

Create a phylogenetic tree — Calculate the pairwise distance between biological
sequences (segpdist), estimate the substitution rates (dnds, dndsml), build a
phylogenetic tree from pairwise distances (seql inkage, seqneighjoin, reroot),
and view the tree in an interactive GUI that allows you to view, edit, and explore the
data (phytreeviewer or view). This GUI also allows you to prune branches, reorder,
rename, and explore distances.

Phylogenetic tree object methods — You can access the functionality of the
phytreeviewer user interface using methods for a phylogenetic tree object (phytree).
Get property values (get) and node names (getbyname). Calculate the patristic
distances between pairs of leaf nodes (pdist, weights) and draw a phylogenetic tree
object in a MATLAB Figure window as a phylogram, cladogram, or radial treeplot
(plot). Manipulate tree data by selecting branches and leaves using a specified criterion
(select, subtree) and removing nodes (prune). Compare trees (getcanonical) and
use Newick-formatted strings (getnewickstr).

More About

. “Sequence Utilities and Statistics” on page 1-11

. “Sequence Analysis”
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Microarray Data Analysis Tools
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The MATLAB environment is widely used for microarray data analysis, including
reading, filtering, normalizing, and visualizing microarray data. However, the standard
normalization and visualization tools that scientists use can be difficult to implement.
The toolbox includes these standard functions:

Microarray data — Read Affymetrix GeneChip files (affyread) and plot data
(probesetplot), ImaGene results files (imageneread), SPOT files (sptread) and
Agilent microarray scanner files (agferead). Read GenePix GPR files (gprread)
and GAL files (gal read). Get Gene Expression Omnibus (GEO) data from the Web
(getgeodata) and read GEO data from files (geosoftread).

A utility function (nagetfield) extracts data from one of the microarray reader
functions (gprread, agferead, sptread, imageneread).

Microarray normalization and filtering — The toolbox provides a number of
methods for normalizing microarray data, such as lowess normalization (malowess)

and mean normalization (manorm), or across multiple arrays (quantilenorm). You

can use filtering functions to clean raw data before analysis (geneentropyfi lter,
genelowvalfilter, generangefilter, genevarfilter), and calculate the range and
variance of values (exprprofrange, exprprofvar).

Microarray visualization — The toolbox contains routines for visualizing microarray
data. These routines include spatial plots of microarray data (maimage, redgreencmap),
box plots (maboxplot), loglog plots (maloglog), and intensity-ratio plots (mairplot).
You can also view clustered expression profiles (clustergram, redgreencmap). You can
create 2-D scatter plots of principal components from the microarray data (napcaplot).

Microarray utility functions — Use the following functions to work with Affymetrix
GeneChip data sets. Get library information for a probe (probel ibraryinfo), gene
information from a probe set (probesetlookup), and probe set values from CEL and
CDF information (probesetvalues). Show probe set information from NetAffx™
Analysis Center (probesetlink) and plot probe set values (probesetplot).

The toolbox accesses statistical routines to perform cluster analysis and to visualize
the results, and you can view your data through statistical visualizations such as
dendrograms, classification, and regression trees.

More About

. “Microarray Data Storage” on page 1-16
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“Microarray Analysis”
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Microarray Data Storage
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The Bioinformatics Toolbox includes functions, objects, and methods for creating, storing,
and accessing microarray data.

The object constructor function, DataMatriXx, lets you create a DataMatrix object to
encapsulate data and metadata from a microarray experiment. A DataMatrix object
stores experimental data in a matrix, with rows typically corresponding to gene names

or probe identifiers, and columns typically corresponding to sample identifiers. A
DataMatrix object also stores metadata, including the gene names or probe identifiers (as
the row names) and sample identifiers (as the column names).

You can reference microarray expression values in a DataMatrix object the same way
you reference data in a MATLAB array, that is, by using linear or logical indexing.
Alternately, you can reference this experimental data by gene (probe) identifiers and
sample identifiers. Indexing by these identifiers lets you quickly and conveniently access
subsets of the data without having to maintain additional index arrays.

Many MATLAB operators and arithmetic functions are available to DataMatrix objects
by means of methods. These methods let you modify, combine, compare, analyze, plot,
and access information from DataMatrix objects. Additionally, you can easily extend the
functionality by using general element-wise functions, dmarrayfun and dmbsxfun, and
by manually accessing the properties of a DataMatrix object.

Note: For more information on creating and using DataMatrix objects, see “Representing
Expression Data Values in DataMatrix Objects” on page 4-5.

More About

. “Microarray Data Analysis Tools” on page 1-14

. “Microarray Analysis”
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Mass Spectrometry Data Analysis

The mass spectrometry functions preprocess and classify raw data from SELDI-TOF and
MALDI-TOF spectrometers and use statistical learning functions to identify patterns.

Reading raw data — Load raw mass/charge and ion intensity data from comma-
separated-value (CSV) files, or read a JCAMP-DX-formatted file with mass spectrometry
data (jcampread) into the MATLAB environment.

You can also have data in TXT files and use the importdata function.

Preprocessing raw data — Resample high-resolution data to a lower resolution
(msresample) where the extra data points are not needed. Correct the baseline
(msbackadj). Align a spectrum to a set of reference masses (msal ign) and visually
verify the alignment (nsheatmap). Normalize the area between spectra for comparing
(msnorm), and filter out noise (nslowess and mssgolay).

Spectrum analysis — Load spectra into a GUI (msviewer) for selecting mass peaks
and further analysis.

The following graphic illustrates the roles of the various mass spectrometry functions in
the toolbox.
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Mass Spectrometry Data Analysis

More About
. “Mass Spectrometry and Bioanalytics”
. “Data Formats and Databases” on page 1-8
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Graph Theory Functions

Graph theory functions in the Bioinformatics Toolbox apply basic graph theory
algorithms to sparse matrices. A sparse matrix represents a graph, any nonzero entries
in the matrix represent the edges of the graph, and the values of these entries represent
the associated weight (cost, distance, length, or capacity) of the edge. Graph algorithms
that use the weight information will cancel the edge if a NaN or an InF is found. Graph
algorithms that do not use the weight information will consider the edge if a NaN or an
Inf is found, because these algorithms look only at the connectivity described by the
sparse matrix and not at the values stored in the sparse matrix.

Sparse matrices can represent four types of graphs:

* Directed Graph — Sparse matrix, either double real or logical. Row (column)
index indicates the source (target) of the edge. Self-loops (values in the diagonal) are
allowed, although most of the algorithms ignore these values.

+ Undirected Graph — Lower triangle of a sparse matrix, either double real or
logical. An algorithm expecting an undirected graph ignores values stored in the
upper triangle of the sparse matrix and values in the diagonal.

* Direct Acyclic Graph (DAG) — Sparse matrix, double real or logical, with zero
values in the diagonal. While a zero-valued diagonal is a requirement of a DAG, it
does not guarantee a DAG. An algorithm expecting a DAG will not test for cycles
because this will add unwanted complexity.

* Spanning Tree — Undirected graph with no cycles and with one connected
component.

There are no attributes attached to the graphs; sparse matrices representing all four
types of graphs can be passed to any graph algorithm. All functions will return an error
on nonsquare sparse matrices.

Graph algorithms do not pretest for graph properties because such tests can introduce

a time penalty. For example, there is an efficient shortest path algorithm for DAG,
however testing if a graph is acyclic is expensive compared to the algorithm. Therefore, it
is important to select a graph theory function and properties appropriate for the type of
the graph represented by your input matrix. If the algorithm receives a graph type that
differs from what it expects, it will either:

* Return an error when it reaches an inconsistency. For example, if you pass a cyclic
graph to the graphshortestpath function and specify Acyclic as the method
property.
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Produce an invalid result. For example, if you pass a directed graph to a function

with an algorithm that expects an undirected graph, it will ignore values in the upper
triangle of the sparse matrix.

The graph theory functions include graphal Ishortestpaths, graphconncomp,
graphisdag, graphisomorphism, graphisspantree, graphmaxflow,

graphminspantree, graphpred2path, graphshortestpath, graphtopoorder, and
graphtraverse.

More About

. “Graph Visualization” on page 1-22

“Network Analysis and Visualization”
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Graph Visualization
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The Bioinformatics Toolbox includes functions, objects, and methods for creating,
viewing, and manipulating graphs such as interactive maps, hierarchy plots, and
pathways. This allows you to view relationships between data.

The object constructor function (biograph) lets you create a biograph object to hold
graph data. Methods of the biograph object let you calculate the position of nodes
(dolayout), draw the graph (view), get handles to the nodes and edges (getnodesbyid
and getedgesbynodeid) to further query information, and find relations between the
nodes (getancestors, getdescendants, and getrelatives). There are also methods
that apply basic graph theory algorithms to the biograph object.

Various properties of a biograph object let you programmatically change the properties of
the rendered graph. You can customize the node representation, for example, drawing pie
charts inside every node (CustomNodeDrawFcn). Or you can associate your own callback
functions to nodes and edges of the graph, for example, opening a Web page with more
information about the nodes (NodeCal Iback and EdgeCal Iback).

More About
. “Graph Theory Functions” on page 1-20

. “Network Analysis and Visualization”
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Statistical Learning and Visualization

You can classify and identify features in data sets, set up cross-validation experiments,
and compare different classification methods.

The toolbox provides functions that build on the classification and statistical learning
tools in the Statistics and Machine Learning Toolbox software (classify, kmeans,
Ffitctree, and Fitrtree).

These functions include imputation tools (knnimpute), and K-nearest neighbor
classifiers (knnclassify).

Other functions include set up of cross-validation experiments (crossval ind) and
comparison of the performance of different classification methods (classpert).

In addition, there are tools for selecting diversity and discriminating features
(rankfeatures, randfeatures).
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Prototyping and Development Environment
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The MATLAB environment lets you prototype and develop algorithms and easily
compare alternatives.

Integrated environment — Explore biological data in an environment that
integrates programming and visualization. Create reports and plots with the built-in
functions for mathematics, graphics, and statistics.

Open environment — Access the source code for the toolbox functions. The toolbox
includes many of the basic bioinformatics functions you will need to use, and it
includes prototypes for some of the more advanced functions. Modify these functions
to create your own custom solutions.

Interactive programming language — Test your ideas by typing functions that
are interpreted interactively with a language whose basic data element is an array.
The arrays do not require dimensioning and allow you to solve many technical
computing problems,

Using matrices for sequences or groups of sequences allows you to work efficiently and
not worry about writing loops or other programming controls.

Programming tools — Use a visual debugger for algorithm development and
refinement and an algorithm performance profiler to accelerate development.



Data Visualization

Data Visualization

You can visually compare pairwise sequence alignments, multiply aligned sequences,
gene expression data from microarrays, and plot nucleic acid and protein characteristics.
The 2-D and volume visualization features let you create custom graphical
representations of multidimensional data sets. You can also create montages and
overlays, and export finished graphics to an Adobe® PostScript® image file or copy
directly into Microsoft PowerPoint®.

1-25



1 Getting Started

Algorithm Sharing and Application Deployment
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The open MATLAB environment lets you share your analysis solutions with other

users, and it includes tools to create custom software applications. With the addition of
MATLAB Compiler and MATLAB Compiler SDK, you can create standalone applications
independent of the MATLAB environment.

Share algorithms with other users — You can share data analysis algorithms
created in the MATLAB language across all supported platforms by giving files to
other users. You can also create GUIs within the MATLAB environment using the
Graphical User Interface Development Environment (GUIDE).

Deploy MATLAB GUIs — Create a GUI within the MATLAB environment using
GUIDE, and then use MATLAB Compiler software to create a standalone GUI
application that runs separately from the MATLAB environment.

Create dynamic link libraries (DLLs) — Use MATLAB Compiler software to
create DLLs for your functions, and then link these libraries to other programming
environments such as C and C++.

Create COM objects — Use MATLAB Compiler SDK to create COM objects, and
then use a COM-compatible programming environment (Visual Basic®) to create a
standalone application.

Create Excel add-ins — Use MATLAB Compiler to create Excel add-in functions,
and then use these functions with Excel spreadsheets.

Create Java classes — Use MATLAB Compiler SDK to automatically generate Java
classes from algorithms written in the MATLAB programming language. You can run
these classes outside the MATLAB environment.
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Exchange Bioinformatics Data Between Excel and MATLAB

In this section...
“Using Excel and MATLAB Together” on page 1-27
“About the Example” on page 1-27

“Before Running the Example” on page 1-27
“Running the Example for the Entire Data Set” on page 1-28
“Editing Formulas to Run the Example on a Subset of the Data” on page 1-31

“Using the Spreadsheet Link product to Interact With the Data in MATLAB” on page
1-32

Using Excel and MATLAB Together

If you have bioinformatics data in an Excel (2007 or 2010) spreadsheet, use Spreadsheet
Link to:

+  Connect Excel with the MATLAB Workspace to exchange data

+ Use MATLAB and Bioinformatics Toolbox computational and visualization functions

About the Example

Note: The following example assumes you have Spreadsheet Link software installed on
your system.

The Excel file used in the following example contains data from DeRisi, J.L., Iyer, V.R.,
and Brown, P.O. (Oct. 24, 1997). Exploring the metabolic and genetic control of gene
expression on a genomic scale. Science 278(5338), 680—-686. PMID: 9381177. The data
was filtered using the steps described in Gene Expression Profile Analysis.

Before Running the Example

1 Ifnot already done, modify your system path to include the MATLAB root folder as
described in the Spreadsheet Link documentation.
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If not already done, enable the Spreadsheet Link Add-In as described in “Add-In
Setup” (Spreadsheet Link).

Close MATLAB and Excel if they are open.

Start Excel 2007 or 2010 software. MATLAB and Spreadsheet Link software
automatically start.

From Excel, open the following file provided with the Bioinformatics Toolbox
software:

matlabroot\toolbox\bioinfo\biodemos\Filtered_ Yeastdata.xlsm

Note: matlabroot is the MATLAB root folder, which is where MATLAB software is
installed on your system.

In the Excel software, enable macros. Click the Developer tab, and then select
Macro Security from the Code group. (If the Developer tab is not displayed on the
Excel ribbon, consult Excel Help to display it.)

Running the Example for the Entire Data Set

1

In the provided Excel file, note that columns A through H contain data from DeRisi
et al. Also note that cells J5, J6, J7, and J12 contain formulas using Spreadsheet
Link functions MLPutMatrix and MLEvalString.

Tip: To view a cell's formula, select the cell, and then view the formula in the formula

bar A at the top of the Excel window.

Execute the formulas in cells J5, J6, J7, and J12, by selecting the cell, pressing F2,
and then pressing Enter.

Each of the first three cells contains a formula using the Spreadsheet Link function
MLPutMatrix, which creates a MATLAB variable from the data in the spreadsheet.
Cell J12 contains a formula using the Spreadsheet Link function MLEvalString,
which runs the Bioinformatics Toolbox clustergram function using the three
variables as input. For more information on adding formulas using Spreadsheet Link
functions, see “Create Diagonal Matrix Using Worksheet Cells” (Spreadsheet Link).
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Cells J5, J6, and J7 contain formulas
that use the MLPutMatrix function
to create three MATLAB variables.

Cell J12 contains a formula

that uses the MLEvalString function

to run the Bioinformatics Toolbox function
clustergram.

3 MATLAB variables

Push the data intgz

== MLPutpdatrix("data" B4:HB17)

Run the clustergram command on the data using the 3 variables

0 <== MLEvalString("clustergram(data,' RowLabels' Genes,'ColumnLz

Run the macro function Clustergram on the data using cell ranges

0 <== Clustergram(B4:HB617 A4:AB17 B3:H3)

Cell J17 contains a formula
that uses a macro function,
Clustergram, created in
Visual Basic Editor.

3 Note that cell J17 contains a formula using a macro function Clustergram, which
was created in the Visual Basic Editor. Running this macro does the same as the
formulas in cells J5, J6, J7, and J12. Optionally, view the Clustergram macro
function by clicking the Developer tab, and then clicking the Visual Basic button

1-29



1 Getting Started

1-30

==|. (If the Developer tab is not on the Excel ribbon, consult Excel Help to display
it.)

For more information on creating macros using Visual Basic Editor, see “Create
Diagonal Matrix Using VBA Macro” (Spreadsheet Link).

Execute the formula in cell J17 to analyze and visualize the data:

a Select cell J17.

b Press F2.

¢ Press Enter.

The macro function Clustergram runs creating three MATLAB variables (data,

Genes, and TimeSteps) and displaying a Clustergram window containing
dendrograms and a heat map of the data.

il
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Editing Formulas to Run the Example on a Subset of the Data

1 Edit the formulas in cells J5 and J6 to analyze a subset of the data. Do this by
editing the formulas’ cell ranges to include data for only the first 30 genes:

a Select cell J5, and then press F2 to display the formula for editing. Change
H617 to H33, and then press Enter.

[EMLPuthdatrizi"data" B4:H33)]

b  Select cell J6, then press F2 to display the formula for editing. Change A617 to
A33, and then press Enter.

[EMLPutMatrizi" Genes" Ad:A33 |

2 Run the formulas in cells J5, J6, J7, and J12 to analyze and visualize a subset of the
data:
a Select cell J5, press F2, and then press Enter.
b  Select cell J6, press F2, and then press Enter.

Select cell J7, press F2, and then press Enter.

[« I o}

Select cell J12, press F2, and then press Enter.
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Using the Spreadsheet Link product to Interact With the Data in MATLAB

Use the MATLAB group on the right side of the Home tab to interact with the data:
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MATLAE Function YWizard

Preferences
[

For example, create a variable in MATLAB containing a 3-by-7 matrix of the data, plot
the data in a Figure window, and then add the plot to your spreadsheet:

1  Click-drag to select cells B5 through H7.

0.305 0.146 0129 -0.444 -0.707 -1.459 -1.935
0.157 0.175 0.467 -0.379 -0.52 -1.278 2125
0.245 0.796 0.384 0.851 1.02 1.646 1.157

2 From the MATLAB group, select Send data to MATLAB.
3 Type YAGenes for the variable name, and then click OK.

The variable YAGenes is added to the MATLAB Workspace as a 3-by-7 matrix.
4 From the MATLAB group, select Run MATLAB command.
5 Type plot(YAGenes") for the command, and then click OK.

A Figure window displays a plot of the data.

Note: Make sure you use the " (transpose) symbol when plotting the data in this
step. You need to transpose the data in YAGenes so that it plots as three genes over
seven time intervals.
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6  Select cell J20, and then click from the MATLAB group, select Get MATLAB
figure.

The figure is added to the spreadsheet.
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Get Information from Web Database

In this section...

“What Are get Functions?” on page 1-35
“Creating the getpubmed Function” on page 1-36

What Are get Functions?

Bioinformatics Toolbox includes several get functions that retrieve information from
various Web databases. Additionally, with some basic MATLAB programming skills, you
can create your own get function to retrieve information from a specific Web database.

The following procedure illustrates how to create a function to retrieve information from
the NCBI PubMed database and read the information into a MATLAB structure. The
NCBI PubMed database contains biomedical literature citations and abstracts.

- A service of the U.S. National Library

(-S N C B I P u b ed and the National Instifu

www.pubmed.gov
All Databases PubMed Nucleotide Protein Genome Structure OMIM PMC Journals Books
Search | PubMed x| for| Go | Clear I Advanced Search (beta

[ Limits | Preview/index | History | Clipboard | Details |

About Entrez
Text Version To get started with PubMed, enter one or more search terms.

Search terms may be topics, authors or journals.

Help | FAQ

{utonals. Set up an automated PubMed update in fewer than
New/Moteworthy B .
E-Utilities NCRBI| five minutes.

PubMed Se!
Journals Database
MeSH Database

1. Create a My NCBI account.
2. Save your search.

Single Citation 3. Your PubMed updates can be e-mailed directly to you.

gl:tt;: !“ritaticrn Matcher Read the My NCBI Help material to explore other options. such as automated updates of
e AT ; other databases, setting search filters, and highlighting search terms.

Special Queries

LinkOut

My NCBI PubMed is a service of the U.S. National Library of Medicine that includes over 17 million citations

from MEDLINE and other life science journals for biomedical articles back to the 1950s. PubMed
includes links to full text articles and other related resources.
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Creating the getpubmed Function

The following procedure shows you how to create a function named getpubmed using
the MATLAB Editor. This function will retrieve citation and abstract information from
PubMed literature searches and write the data to a MATLAB structure.

Specifically, this function will take one or more search terms, submit them to the
PubMed database for a search, then return a MATLAB structure or structure array, with
each structure containing information for an article found by the search. The returned
information will include a PubMed identifier, publication date, title, abstract, authors,
and citation.

The function will also include property name-value pairs that let the user of the function
limit the search by publication date and limit the number of records returned. Below is
the step-by-step guide to create the function from the beginning. To see the completed m-
file, type edit getpubmed.m.

1  From MATLAB, open the MATLAB Editor by selecting File > New > Function.
2 Define the getpubmed function, its input arguments, and return values by typing:

function pmstruct = getpubmed(searchterm,varargin)
% GETPUBMED Search PubMed database & write results to MATLAB structure

3 Add code to do some basic error checking for the required input SEARCHTERM.

% Error checking for required input SEARCHTERM

if(nargin<l)
error(message(“bioinfo:getpubmed:NotEnoughlnputArguments®));

end

4 Create variables for the two property name-value pairs, and set their default values.

% Set default settings for property name/value pairs,

% “NUMBEROFRECORDS®" and “DATEOFPUBLICATION*

maxnum = 50; % NUMBEROFRECORDS default is 50

pubdate = ""; % DATEOFPUBLICATION default is an empty string

5 Add code to parse the two property name-value pairs if provided as input.

% Parsing the property name/value pairs
num_argin = numel(varargin);
for n = 1:2:num_argin

arg = varargin{n};

switch lower(arg)
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% 1F NUMBEROFRECORDS is passed, set MAXNUM
case "numberofrecords”
maxnum = varargin{n+1};

% If DATEOFPUBLICATION is passed, set PUBDATE
case "dateofpublication®
pubdate = varargin{n+1};

end
end
You access the PubMed database through a search URL, which submits a search
term and options, and then returns the search results in a specified format. This
search URL is comprised of a base URL and defined parameters. Create a variable
containing the base URL of the PubMed database on the NCBI Web site.

% Create base URL for PubMed db site

baseSearchURL = "https://www.ncbi._.nIm_nih_gov/sites/entrez?cmd=search”;
Create variables to contain five defined parameters that the getpubmed function
will use, namely, db (database), term (search term), report (report type, such as
MEDLINE®), format (format type, such as text), and dispmax (maximum number of
records to display).

% Set db parameter to pubmed
dbOpt = “&db=pubmed”;

% Set term parameter to SEARCHTERM and PUBDATE
% (Default PUBDATE is "*)
termOpt = ["&term=",searchterm, "+AND+",pubdate];

% Set report parameter to medline
reportOpt = “&report=medline”;

% Set format parameter to text
formatOpt = “&format=text”;

% Set dispmax to MAXNUM
% (Default MAXNUM is 50)
maxOpt = ["&dispmax=",num2str(maxnum)];

Create a variable containing the search URL from the variables created in the
previous steps.

% Create search URL
searchURL = [baseSearchURL,dbOpt,termOpt, reportOpt, formatOpt,maxOpt];
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9 Use the urlread function to submit the search URL, retrieve the search results,
and return the results (as text in the MEDLINE report type) in medl ineText, a
character array.

medlineText = urlread(searchURL);

10 Use the MATLAB regexp function and regular expressions to parse and extract
the information in medlineText into hits, a cell array, where each cell contains
the MEDLINE-formatted text for one article. The first input is the character array
to search, the second input is a search expression, which tells the regexp function
to find all records that start with PMID-, while the third input, "match®, tells
the regexp function to return the actual records, rather than the positions of the
records.

hits = regexp(medlineText, "PMID-_*?(?=PMID|</pre>$) ", "match®);
11 Instantiate the pmstruct structure returned by getpubmed to contain six fields.

pmstruct = struct("PubMedID*®,"", "PublicationDate”,"", *Title"," ", ..
"Abstract®," ", "Authors®, " ", "Citation”,"");
12 Use the MATLAB regexp function and regular expressions to loop through each
article in hits and extract the PubMed ID, publication date, title, abstract, authors,
and citation. Place this information in the pmstruct structure array.

for n = 1:numelChits)
pmstruct(n).PubMedID = regexp(hits{n}, " (?<=PMID- ).*?(?=\n)", "match®, “once");
pmstruct(n).PublicationDate = regexp(hits{n}, " (?<=DP - ).*?(?=\n)","match", “once");
pmstruct(n).Title = regexp(hits{n}, " (?<=T1 - )_.*?(?=PG -]AB -)","match", “once");
pmstruct(n).Abstract = regexp(hits{n}, " (?<=AB - ).*?(?=AD -)","match", “once");
pmstruct(n) .Authors = regexp(hits{n}, " (?<=AU - ).*?(?=\n)", "match");
pmstruct(n).Citation = regexp(hits{n},"(?<=S0 - ).*?(?=\n)","match”, "once");

end

13 Select File > Save As.

When you are done, your file should look similar to the getpubmed .m file included
with the Bioinformatics Toolbox software. The file is located at:

matlabroot\toolbox\bioinfo\biodemos\getpubmed.m

Note: The notation matlabroot is the MATLAB root directory, which is the
directory where the MATLAB software is installed on your system.
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“Work with Large Multi-Entry Text Files” on page 2-2
“Manage Short-Read Sequence Data in Objects” on page 2-8
“Store and Manage Feature Annotations in Objects” on page 2-21

“Visualize and Investigate Short-Read Alignments” on page 2-28
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Work with Large Multi-Entry Text Files

In this section...

“Overview” on page 2-2

“What Files Can You Access?” on page 2-2

“Before You Begin” on page 2-3

“Create a BioIndexedFile Object to Access Your Source File” on page 2-4

“Determine the Number of Entries Indexed By a BioIndexedFile Object” on page
2-4

“Retrieve Entries from Your Source File” on page 2-5

“Read Entries from Your Source File” on page 2-5

Overview

Many biological experiments produce huge data files that are difficult to access due

to their size, which can cause memory issues when reading the file into the MATLAB
Workspace. You can construct a BioIndexedFile object to access the contents of a large
text file containing nonuniform size entries, such as sequences, annotations, and cross-
references to data sets. The BiolndexedFi le object lets you quickly and efficiently
access this data without loading the source file into memory.

You can use the BiolndexedFi le object to access individual entries or a subset of
entries when the source file is too big to fit into memory. You can access entries using
indices or keys. You can read and parse one or more entries using provided interpreters
or a custom interpreter function.

Use the BiolndexedFi le object in conjunction with your large source file to:

* Access a subset of the entries for validation or further analysis.

+ Parse entries using a custom interpreter function.

What Files Can You Access?

You can use the BiolndexedFi le object to access large text files.

Your source file can have these application-specific formats:
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. FASTA
. FASTQ
- SAM

Your source file can also have these general formats:

+ Table — Tab-delimited table with multiple columns. Keys can be in any column.
Rows with the same key are considered separate entries.

*  Multi-row Table — Tab-delimited table with multiple columns. Keys can be in
any column. Contiguous rows with the same key are considered a single entry.
Noncontiguous rows with the same key are considered separate entries.

+ Flat — Flat file with concatenated entries separated by a character vector, typically
//. Within an entry, the key is separated from the rest of the entry by a white space.

Before You Begin

Before constructing a BiolndexedFi le object, locate your source file on your hard drive
or a local network.

When you construct a BiolndexedFi le object from your source file for the first time,
you also create an auxiliary index file, which by default is saved to the same location as
your source file. However, if your source file is in a read-only location, you can specify a
different location to save the index file.

Tip: If you construct a BiolndexedFi le object from your source file on subsequent
occasions, it takes advantage of the existing index file, which saves time. However,

the index file must be in the same location or a location specified by the subsequent
construction syntax.

Tip: If insufficient memory is not an issue when accessing your source file, you may want
to try an appropriate read function, such as genbankread, for importing data from
GenBank files. .

Additionally, several read functions such as fastaread, fastqread, samread, and
sftfread include a Blockread property, which lets you read a subset of entries from a
file, thus saving memory.
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Create a BiolndexedFile Object to Access Your Source File

To construct a BiolndexedFi le object from a multi-row table file:

1

Create a variable containing the full absolute path of your source file. For your
source file, use the yeastgenes.sgd file, which is included with the Bioinformatics
Toolbox software.

sourcefile = which("yeastgenes.sgd");

Use the BiolndexedFi le constructor function to construct a BiolndexedFile
object from the yeastgenes.sgd source file, which is a multi-row table file. Save
the index file in the Current Folder. Indicate that the source file keys are in column
3. Also, indicate that the header lines in the source file are prefaced with !, so the
constructor ignores them.

gene2goObj = BiolndexedFile("mrtab”, sourcefile, ".", ...
"KeyColumn®, 3, "HeaderPrefix®,"!")

The BiolndexedFi le constructor function constructs gene2goObj, a
BiolndexedFi le object, and also creates an index file with the same name as the
source file, but with an IDX extension. It stores this index file in the Current Folder
because we specified this location. However, the default location for the index file is
the same location as the source file.

Caution: Do not modify the index file. If you modify it, you can get invalid results.
Also, the constructor function cannot use a modified index file to construct future
objects from the associated source file.

Determine the Number of Entries Indexed By a BiolndexedFile Object

To determine the number of entries indexed by a BiolndexedFi le object, use the
NumEntries property of the BiolndexedFi le object. For example, for the gene2goObj
object:

gene2goObj -NumEntries

ans

6476
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Note: For a list and description of all properties of a BiolndexedFi le object, see
BiolndexedFile class.

Retrieve Entries from Your Source File

Retrieve entries from your source file using either:

* The index of the entry
* The entry key

Retrieve Entries Using Indices

Use the getEntryBylIndex method to retrieve a subset of entries from your source file
that correspond to specified indices. For example, retrieve the first 12 entries from the
yeastgenes.sgd source file:

subset_entries = getEntryBylndex(gene2goObj, [1:12]);
Retrieve Entries Using Keys

Use the getEntryByKey method to retrieve a subset of entries from your source file that
are associated with specified keys. For example, retrieve all entries with keys of AAC1
and AAD10 from the yeastgenes.sgd source file:

subset_entries = getEntryByKey(gene2goObj, {"AAC1l" "AAD10"});

The output subset_entries is a character vector of concatenated entries. Because the
keys in the yeastgenes.sgd source file are not unique, this method returns all entries
that have a key of AAC1 or AAD10.

Read Entries from Your Source File

The BiolndexedFi le object includes a read method, which you can use to read and
parse a subset of entries from your source file. The read method parses the entries using
an interpreter function specified by the Interpreter property of the BiolndexedFile
object.

Set the Interpreter Property

Before using the read method, make sure the Interpreter property of the
BiolndexedFi le object is set appropriately.

2-5
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If you constructed a BiolndexedFile The Interpreter property ...

object from ...

A source file with an application- By default is a handle to a function appropriate
specific format (FASTA, FASTQ, or for that file type and typically does not require
SAM) you to change it.

A source file with a table, multi-row |By default is [], which means the interpreter is
table, or flat format an anonymous function in which the output is

equivalent to the input. You can change this to
a handle to a function that accepts a character
vector of one or more concatenated entries and
returns a structure or an array of structures

containing the interpreted data.

There are two ways to set the Interpreter property of the BiolndexedFi le object:

*  When constructing the BiolndexedFi le object, use the Interpreter property
name/property value pair

+ After constructing the BiolndexedFi le object, set the Interpreter property

Note: For more information on setting the Interpreter property of a BiolndexedFile
object, see BioIndexedFile class.

Read a Subset of Entries

The read method reads and parses a subset of entries that you specify using either entry
indices or keys.

Example

To quickly find all the gene ontology (GO) terms associated with a particular gene
because the entry keys are gene names:

1 Set the Interpreter property of the gene2goObj BiolndexedFi le object to a
handle to a function that reads entries and returns only the column containing the
GO term. In this case the interpreter is a handle to an anonymous function that
accepts character vectors and extracts those that start with the characters GO.

gene2goObj . Interpreter = @(x) regexp(x,"GO:\d+","match®)
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Read only the entries that have a key of YAT2, and return their GO terms.

GO_YAT2_entries = read(gene2goObj, "YAT2")

GO_YAT2_entries

"G0:0004092" "GO:0005737" *"GO:0006066" "GO:0006066" "GO:0009437"
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In this section...

“Overview” on page 2-8
“Represent Sequence and Quality Data in a BioRead Object” on page 2-9

“Represent Sequence, Quality, and Alignment/Mapping Data in a BioMap Object” on
page 2-10

“Retrieve Information from a BioRead or BioMap Object” on page 2-14
“Set Information in a BioRead or BioMap Object” on page 2-16
“Determine Coverage of a Reference Sequence” on page 2-17

“Construct Sequence Alignments to a Reference Sequence” on page 2-18

“Filter Read Sequences Using SAM Flags” on page 2-19

Overview
High-throughput sequencing instruments produce large amounts of short-read sequence
data that can be challenging to store and manage. Using objects to contain this data lets

you easily access, manipulate, and filter the data.

Bioinformatics Toolbox includes two objects for working with short-read sequence data.

Object Contains This Information Construct from One of These
BioRead * Sequence headers + FASTQ file
Read sequences + SAM file

+  Sequence qualities (base calling) FASTQ structure (created using

the fastqread function)

+  SAM structure (created using
the samread function)

+ Cell arrays containing
header, sequence, and quality
information (created using the
fastqread function)

BioMap + Sequence headers + SAM file

+ Read sequences + BAM file
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Object

Contains This Information

Construct from One of These

Sequence qualities (base calling)

Sequence alignment and
mapping information (relative
to a single reference sequence),
including mapping quality

SAM structure (created using
the samread function)

BAM structure (created using
the bamread function)

Cell arrays containing header,
sequence, quality, and mapping/
alignment information (created
using the samread or bamread
function)

Represent Sequence and Quality Data in a BioRead Object

Prerequisites

A BioRead object represents a collection of short-read sequences. Each element in the
object is associated with a sequence, sequence header, and sequence quality information.

Construct a BioRead object in one of two ways:

* Indexed — The data remains in the source file. Constructing the object and accessing
its contents is memory efficient. However, you cannot modify object properties, other
than the Name property. This is the default method if you construct a BioRead object
from a FASTQ- or SAM-formatted file.

* In Memory — The data is read into memory. Constructing the object and accessing
its contents is limited by the amount of available memory. However, you can modify
object properties. When you construct a BioRead object from a FASTQ structure or
cell arrays, the data is read into memory. When you construct a BioRead object from
a FASTQ- or SAM-formatted file, use the InMemory name-value pair argument to
read the data into memory.

Construct a BioRead Obiject from a FASTQ- or SAM-Formatted File

Note: This example constructs a BioRead object from a FASTQ-formatted file. Use
similar steps to construct a BioRead object from a SAM-formatted file.

Use the BioRead constructor function to construct a BioRead object from a FASTQ-
formatted file and set the Name property:

2-9
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BRObj1 BioRead("SRR005164 1 50.fastq", "Name", “"MyObject®)

BRObj1
BioRead with properties:

Quality: [50x1 File indexed property]
Sequence: [50x1 File indexed property]
Header: [50x1 File indexed property]
NSeqgs: 50
Name: “"MyObject”

The constructor function construct a BioRead object and, if an index file does not already
exist, it also creates an index file with the same file name, but with an .IDX extension.
This index file, by default, is stored in the same location as the source file.

Caution: Your source file and index file must always be in sync.

+ After constructing a BioRead object, do not modify the index file, or you can get
invalid results when using the existing object or constructing new objects.

+ If you modify the source file, delete the index file, so the object constructor creates a
new index file when constructing new objects.

Note: Because you constructed this BioRead object from a source file, you cannot modify
the properties (except for Name) of the BioRead object.

Represent Sequence, Quality, and Alignment/Mapping Data in a BioMap
Object

Prerequisites

A BioMap object represents a collection of short-read sequences that map against a
single reference sequence. Each element in the object is associated with a read sequence,
sequence header, sequence quality information, and alignment/mapping information.

When constructing a BioMap object from a BAM file, the maximum size of the file is
limited by your operating system and available memory.

Construct a BioMap object in one of two ways:
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Indexed — The data remains in the source file. Constructing the object and accessing
its contents is memory efficient. However, you cannot modify object properties, other
than the Name property. This is the default method if you construct a BioMap object
from a SAM- or BAM-formatted file.

In Memory — The data is read into memory. Constructing the object and accessing
its contents is limited by the amount of available memory. However, you can modify
object properties. When you construct a BioMap object from a structure, the data
stays in memory. When you construct a BioMap object from a SAM- or BAM-
formatted file, use the InMemory name-value pair argument to read the data into
memory.

Construct a BioMap Object from a SAM- or BAM-Formatted File

Note: This example constructs a BioMap object from a SAM-formatted file. Use similar
steps to construct a BioMap object from a BAM-formatted file.

If you do not know the number and names of the reference sequences in your
source file, determine them using the saminfo or baminfo function and the
ScanDictionary name-value pair argument.

samstruct = saminfo("ex2.sam", "ScanDictionary”, true);
samstruct.ScannedDictionary

ans =

"seql”
"seq2*

Tip: The previous syntax scans the entire SAM file, which is time consuming.
If you are confident that the Header information of the SAM file is correct,
omit the ScanDictionary name-value pair argument, and inspect the
SequenceDictionary field instead.

Use the BioMap constructor function to construct a BioMap object from the SAM
file and set the Name property. Because the SAM-formatted file in this example,
ex2.sam, contains multiple reference sequences, use the SelectRef name-value
pair argument to specify one reference sequence, seql:

BMObj2 = BioMap(“ex2.sam", "SelectRef", "seql®, "Name", "MyObject")

2-11
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BMObj2 =
BioMap with properties:

SequenceDictionary: "seql”
Reference: [1501x1 File indexed property]
Signature: [1501x1 File indexed property]
Start: [1501x1 File indexed property]
MappingQuality: [1501x1 File indexed property]
Flag: [1501x1 File indexed property]
MatePosition: [1501x1 File indexed property]
Quality: [1501x1 File indexed property]
Sequence: [1501x1 File indexed property]
Header: [1501x1 File indexed property]
NSeqgs: 1501
Name: *MyObject*

The constructor function constructs a BioMap object and, if index files do not already
exist, it also creates one or two index files:

If constructing from a SAM-formatted file, it creates one index file that has the same
file name as the source file, but with an .IDX extension. This index file, by default, is
stored in the same location as the source file.

If constructing from a BAM-formatted file, it creates two index files that have
the same file name as the source file, but one with a .BAI extension and one with

a .LINEARINDEX extension. These index files, by default, are stored in the same
location as the source file.

Cavution: Your source file and index files must always be in sync.

After constructing a BioMap object, do not modify the index files, or you can get
invalid results when using the existing object or constructing new objects.

If you modify the source file, delete the index files, so the object constructor creates
new index files when constructing new objects.

Note: Because you constructed this BioMap object from a source file, you cannot modify
the properties (except for Name and Reference) of the BioMap object.
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Construct a BioMap Object from a SAM or BAM Structure

Note: This example constructs a BioMap object from a SAM structure using samread.
Use similar steps to construct a BioMap object from a BAM structure using bamread.

1 Use the samread function to create a SAM structure from a SAM-formatted file:

SAMStruct = samread("ex2.sam");

2 To construct a valid BioMap object from a SAM-formatted file, the file must contain
only one reference sequence. Determine the number and names of the reference
sequences in your SAM-formatted file using the unique function to find unique
names in the ReferenceName field of the structure:

unique({SAMStruct.ReferenceName})
ans =

"seql” "seq2*

3 Use the BioMap constructor function to construct a BioMap object from a SAM
structure. Because the SAM structure contains multiple reference sequences, use the
SelectRef name-value pair argument to specify one reference sequence, seql:

BMObj 1

BioMap(SAMStruct, "SelectRef", "seql®)

BMObj 1

BioMap with properties:

SequenceDictionary: {"seql”}
Reference: {1501x1 cell}
Signature: {1501x1 cell}

Start: [1501x1 uint32]
MappingQuality: [1501x1 uint8]
Flag: [1501x1 uintl6]
MatePosition: [1501x1 uint32]
Quality: {1501x1 cell}
Sequence: {1501x1 cell}
Header: {1501x1 cell}
NSeqs: 1501
Name: **

2-13
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Retrieve Information from a BioRead or BioMap Object

You can retrieve all or a subset of information from a BioRead or BioMap object.
Retrieve a Property from a BioRead or BioMap Object

You can retrieve a specific property from elements in a BioRead or BioMap object.

For example, to retrieve all headers from a BioRead object, use the Header property as
follows:

allHeaders = BRObj1.Header;

This syntax returns a cell array containing the headers for all elements in the BioRead
object.

Similarly, to retrieve all start positions of aligned read sequences from a BioMap object,
use the Start property of the object:

allStarts = BMObjl.Start;

This syntax returns a vector containing the start positions of aligned read sequences with
respect to the position numbers in the reference sequence in a BioMap object.

Retrieve Multiple Properties from a BioRead or BioMap Object

You can retrieve multiple properties from a BioRead or BioMap object in a single
command using the get method. For example, to retrieve both start positions and headers
information of a BioMap object, use the get method as follows:

multiProp = get(BMObj1l, {"Start", "Header"});

This syntax returns a cell array containing all start positions and headers information of
a BioMap object.

Note: Property names are case sensitive.

For a list and description of all properties of a BioRead object, see BioRead class. For a
list and description of all properties of a BioMap object, see BioMap class.




Manage Short-Read Sequence Data in Obijects

Retrieve a Subset of Information from a BioRead or BioMap Object

Use specialized get methods with a numeric vector, logical vector, or cell array of
headers to retrieve a subset of information from an object. For example, to retrieve the
first 10 elements from a BioRead object, use the getSubset method:

newBRObj = getSubset(BRObj1l, [1:10]);

This syntax returns a new BioRead object containing the first 10 elements in the
original BioRead object.

For example, to retrieve the first 12 positions of sequences with headers SRR005164.1,
SRR005164.7, and SRR005164.16, use the getSubsequence method:

subSegs = getSubsequence(BRObj1,
{"SRR0O05164.1", "SRR005164.7", "SRR005164.16"}, [1:12]")

subSeqgs

"TGGCTTTAAAGC*
"CCCGAAAGCTAG"
"AATTTTGCGGCT*

For example, to retrieve information about the third element in a BioMap object, use the
getInfo method:

Info_3 = getinfo(BMObj1, 3);

This syntax returns a tab-delimited character vector containing this information for the
third element:

* Sequence header

+ SAM flags for the sequence

+ Start position of the aligned read sequence with respect to the reference sequence

*  Mapping quality score for the sequence

+ Signature (CIGAR-formatted character vector) for the sequence

*  Sequence

* Quality scores for sequence positions

Note: Method names are case sensitive.

2-15
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For a complete list and description of methods of a BioRead object, see BioRead class.
For a complete list and description of methods of a BioMap object, see BioMap class.

Set Information in a BioRead or BioMap Object
Prerequisites

To modify properties (other than Name and Reference) of a BioRead or BioMap object,
the data must be in memory, and not indexed. To ensure the data is in memory, do one of
the following:

+  Construct the object from a structure as described in “Construct a BioMap Object
from a SAM or BAM Structure” on page 2-13.

+ Construct the object from a source file using the InMemory name-value pair
argument.

Provide Custom Headers for Sequences

First, create an object with the data in memory:

BRObj1 = BioRead("SRR005164_1 50.fastq”, " InMemory",true);

To provide custom headers for sequences of interest (in this case sequences 1 to 5), do the
following:

BRObj1.Header(1:5) = {"H1", "H2", "H3", "H4", "H5"};
Alternatively, you can use the setHeader method:
BRObj1 = setHeader(BRObj1, {"H1®, "H2", *"H3", "H4", "H5"}, [1:5]);

Several other specialized set methods let you set the properties of a subset of elements
in a BioRead or BioMap object.

Note: Method names are case sensitive.

For a complete list and description of methods of a BioRead object, see BioRead class.
For a complete list and description of methods of a BioMap object, see BioMap class.
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Determine Coverage of a Reference Sequence

When working with a BioMap object, you can determine the number of read sequences
that:

+ Align within a specific region of the reference sequence

+ Align to each position within a specific region of the reference sequence

For example, you can compute the number, indices, and start positions of the read

sequences that align within the first 25 positions of the reference sequence. To do so, use
the getCounts, getIndex, and getStart methods:

Cov = getCounts(BMObj1, 1, 25)

Cov
12

getindex(BMObj1l, 1, 25)

Indices

Indices

O©CoO~NOOUMWNLE

10
11
12

startPos = getStart(BMObjl, Indices)

startPos

oouUweEk
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13
13
15
18
22
22
24

The first two syntaxes return the number and indices of the read sequences that align
within the specified region of the reference sequence. The last syntax returns a vector
containing the start position of each aligned read sequence, corresponding to the position
numbers of the reference sequence.

For example, you can also compute the number of the read sequences that align to
each of the first 10 positions of the reference sequence. For this computation, use the
getBaseCoverage method:

Cov = getBaseCoverage(BMObj1, 1, 10)

Cov

1 1 2 2 3 4 4 4 5 5

Construct Sequence Alignments to a Reference Sequence

It is useful to construct and view the alignment of the read sequences that align to a
specific region of the reference sequence. It is also helpful to know which read sequences
align to this region in a BioMap object.

For example, to retrieve the alignment of read sequences to the first 12 positions of the
reference sequence in a BioMap object, use the getAlignment method:

[Alignment_1_12, Indices] = getAlignment(BMObj2, 1, 12)
Alignment_1_12 =

CACTAGTGGCTC
CTAGTGGCTC
AGTGGCTC
GTGGCTC

GCTC
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Indices =

abrwNPE

Return the headers of the read sequences that align to a specific region of the reference
sequence:

alignedHeaders = getHeader(BMObj2, Indices)

alignedHeaders

"B7_591:4:96:693:509"
"EAS54_65:7:152:368:113"
"EAS51_64:8:5:734:57"
"B7_591:1:289:587:906"
"EAS56_59:8:38:671:758"

Filter Read Sequences Using SAM Flags

SAM- and BAM-formatted files include the status of 11 binary flags for each read
sequence. These flags describe different sequencing and alignment aspects of a read
sequence. For more information on the flags, see theSAM Format Specification. The
filterByFlag method lets you filter the read sequences in a BioMap object by using these
flags.

Filier Unmapped Read Sequences

1

Construct a BioMap object from a SAM-formatted file.

BMObj2 = BioMap(“exl.sam");

Use the filterByFlag method to create a logical vector indicating the read sequences
in a BioMap object that are mapped.

LogicalVec_mapped = FfilterByFlag(BMObj2, "unmappedQuery®, false);

Use this logical vector and the getSubset method to create a new BioMap object
containing only the mapped read sequences.

FfilteredBMObj_1 = getSubset(BMObj2, LogicalVec_mapped);
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Filter Read Sequences That Are Not Mapped in a Pair

1

Construct a BioMap object from a SAM-formatted file.

BMObj2 = BioMap("exl.sam");

Use the filterByFlag method to create a logical vector indicating the read sequences
in a BioMap object that are mapped in a proper pair, that is, both the read sequence
and its mate are mapped to the reference sequence.

LogicalVec_paired = filterByFlag(BMObj2, "pairedinMap®, true);

Use this logical vector and the getSubset method to create a new BioMap object
containing only the read sequences that are mapped in a proper pair.

FfilteredBMObj_ 2 = getSubset(BMObj2, LogicalVec_paired);
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Store and Manage Feature Annotations in Objects

In this section...
“Represent Feature Annotations in a GFFAnnotation or GTFAnnotation Object” on page
2-21

“Construct an Annotation Object” on page 2-21

“Retrieve General Information from an Annotation Object” on page 2-22
“Access Data in an Annotation Object” on page 2-23
“Use Feature Annotations with Short-Read Sequence Data” on page 2-24

Represent Feature Annotations in a GFFAnnotation or GTFAnnotation
Obiject

The GFFAnnotation and GTFAnnotation objects represent a collection of feature
annotations for one or more reference sequences. You construct these objects from GFF
(General Feature Format) and GTF (Gene Transfer Format) files. Each element in the
object represents a single annotation. The properties and methods associated with the
objects let you investigate and filter the data based on reference sequence, a feature
(such as CDS or exon), or a specific gene or transcript.

Construct an Annotation Object

Use the GFFAnnotation constructor function to construct a GFFAnnotation object from
either a GFF- or GTF-formatted file:

GFFAnnotObj = GFFAnnotation("tair8_1.gff")
GFFAnnotObj =
GFFAnnotation with properties:

FieldNames: {1x9 cell}
NumEntries: 3331

Use the GTFAnnotation constructor function to construct a GTFAnnotation object from
a GTF-formatted file:

GTFAnnotObj = GTFAnnotation("hum37_2_1M.gtf")
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GTFAnnotObj =
GTFAnnotation with properties:

FieldNames: {1x11 cell}
NumEntries: 308

Retrieve General Information from an Annotation Object

Determine the field names and the number of entries in an annotation object by
accessing the FieldNames and NumEntries properties. For example, to see the
field names for each annotation object constructed in the previous section, query the
FieldNames property:

GFFAnnotObj . FieldNames

ans =
Columns 1 through 6
"Reference” "Start” "Stop* "Feature” "Source” "Score*”
Columns 7 through 9
"Strand* "Frame* "Attributes”
GTFAnnotObj .FieldNames
ans =
Columns 1 through 6
"Reference” "Start” "Stop* "Feature- "Gene* "Transcript”
Columns 7 through 11
"Source* "Score” "Strand* "Frame* "Attributes”

Determine the range of the reference sequences that are covered by feature annotations
by using the getRange method with the annotation object constructed in the previous
section:

range = getRange(GFFAnnotObj)

range

2-22



Store and Manage Feature Annotations in Objects

3631 498516

Access Data in an Annotation Object

Create a Structure of the Annotation Data

Creating a structure of the annotation data lets you access the field values. Use
the getData method to create a structure containing a subset of the data in a
GFFAnnotation object constructed in the previous section.

% Extract annotations for positions 1 through 10000 of the
% reference sequence
AnnotStruct = getData(GFFAnnotObj,1,10000)

AnnotStruct =

60x1 struct array with fields:

Reference

Start

Stop

Feature

Source

Score

Strand

Frame

Attributes

Access Field Values in the Structure
Use dot indexing to access all or specific field values in a structure.

For example, extract the start positions for all annotations:

Starts = AnnotStruct.Start;

Extract the start positions for annotations 12 through 17. Notice that you must use
square brackets when indexing a range of positions:

Starts_12 17 = [AnnotStruct(12:17).Start]
Starts_12_17 =

4706 5174 5174 5439 5439 5631
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Extract the start position and the feature for the 12th annotation:

Start_12 = AnnotStruct(12).Start

Start_12 =

4706

Feature_12 = AnnotStruct(12).Feature

Feature_12

CDS

Use Feature Annotations with Short-Read Sequence Data

Investigate the results of short-read sequence experiments by using GFFAnnotation and
GTFAnnotation objects with BioMap objects. For example, you can:

Determine counts of short-read sequences aligned to regions of a reference sequence
associated with specific annotations, such as in RNA-Seq workflows.

Find annotations within a specific range of a peak of interest in a reference sequence,
such as in ChIP-Seq workflows.

Determine Annotations of Interest

1

Construct a GTFAnnotation object from a GTF- formatted file:

GTFAnnotObj = GTFAnnotation("hum37_2_1M.gtf");

Use the getReferenceNames method to return the names for the reference
sequences for the annotation object:

refNames = getReferenceNames(GTFAnnotObj)
refNames =

“chr2*

Use the getFeatureNames method to retrieve the feature names from the
annotation object:

featureNames = getFeatureNames(GTFAnnotObj)

featureNames =
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"CDS*

"exon*
"start_codon*
"stop_codon*

4 Use the getGeneNames method to retrieve a list of the unique gene names from the
annotation object:

geneNames = getGeneNames(GTFAnnotObj)

geneNames

"uc002qvu.2*
"uc002qvv.2"
"uc002qvw.2"
"uc002qvx.2"
"uc002qvy.2"
"uc002qvz.2"
"ucO002qgwa.2"
"uc002gwb .2*
"uc002gwc.1"
"uc002gwd.2*
"uc002qgwe.3"
"uc002gwf.2*
"uc002gwg.2"
"uc002gwh.2*
"uc002gwi -3~
"uc002gwk.2*
"uc002qgwl .2*
"uc002gqwm.1"
"uc002gwn.1"
"uc002gwo.1"
"uc002qwp.2*
"uc002gwqg.2"
"uc010ewe.2"
"ucO010ewf.1"
"ucO01l0ewg.2"
"uc010ewh.1"
"ucO010ewi . 2"
"uc010yim._1*

The previous steps gave us a list of available reference sequences, features, and genes
associated with the available annotations. Use this information to determine annotations
of interest. For instance, you might be interested only in annotations that are exons
associated with the uc002qvv.2 gene on chromosome 2.
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Filter Annotations

Use the getData method to filter the annotations and create a structure containing only
the annotations of interest, which are annotations that are exons associated with the
uc002qvv.2 gene on chromosome 2.

AnnotStruct = getData(GTFAnnotObj, "Reference”, "chr2®, ...
"Feature”,"exon","Gene", "uc002qvv.2")

AnnotStruct

12x1 struct array with fields:

Reference
Start

Stop
Feature
Gene
Transcript
Source
Score
Strand
Frame
Attributes

The return structure contains 12 elements, indicating there are 12 annotations that meet
your filter criteria.

Extract Position Ranges for Annotations of Interest

After filtering the data to include only annotations that are exons associated with the
uc002qvv.2 gene on chromosome 2, use the Start and Stop fields to create vectors of the
start and end positions for the ranges associated with the 12 annotations.

StartPos = [AnnotStruct.Start];
EndPos = [AnnotStruct.Stop];

Determine Counts of Short-Read Sequences Aligned to Annotations

Construct a BioMap object from a BAM-formatted file containing short-read sequence
data aligned to chromosome 2.

BMObjJ3 = BioMap(“ex3.bam®);
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Then use the range for the annotations of interest as input to the getCounts method
of a BioMap object. This returns the counts of short reads aligned to the annotations of
interest.

counts = getCounts(BMObj3,StartPos,EndPos, "independent”, true)

counts
1399

54

221

97
125

65

12
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In this section...

“When to Use the NGS Browser to Visualize and Investigate Data” on page 2-28
“Open the NGS Browser” on page 2-29

“Import Data into the NGS Browser” on page 2-30

“Zoom and Pan to a Specific Region of the Alignment” on page 2-32
“View Coverage of the Reference Sequence” on page 2-33

“View the Pileup View of Short Reads” on page 2-34

“Compare Alignments of Multiple Data Sets” on page 2-35

“View Location, Quality Scores, and Mapping Information” on page 2-36
“Flag Reads” on page 2-36

“Evaluate and Flag Mismatches” on page 2-37

“View Insertions and Deletions” on page 2-38

“View Feature Annotations” on page 2-39

“Print and Export the Browser Image” on page 2-39

When to Use the NGS Browser to Visualize and Investigate Data

The NGS Browser lets you visually verify and investigate the alignment of short-read
sequences to a reference sequence, in support of analyses that measure genetic variations
and gene expression. The NGS Browser lets you:

* Visualize short-read data aligned to a nucleotide reference sequence.

*  Compare multiple data sets aligned against a common reference sequence.

* View coverage of different bases and regions of the reference sequence.

+ Investigate quality and other details of aligned reads.

* Identify mismatches due to base calling errors or polymorphisms.

* Visualize insertions and deletions.

+ Retrieve feature annotations relative to a specific region of the reference sequence.

+ Investigate regions of interest in the alignment, determined by various analyses.
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You can visualize and investigate the aligned data before, during, or after any
preprocessing (filtering, quality recalibration) or analysis steps you perform on the

aligned data.

Open the NGS Browser

To open the NGS Browser, type the following in the MATLAB Command Window:

ngsbrowser

Alternatively, click the NGS Browser on the Apps tab.

Overview

Ruler

4\ NGS Browser [E=n (===
File Desktop Window Help

Center on Position: |0 ELIL Y ¢

(B Tack List 2 x

[ i 3k

Name Type Visible  Data Source

Settings a

Visible range for display (kb): |10
Show Overview

Specify nucleotide colors:

-AME-C -G -7 H-N

Read name Base Pos
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Import Data into the NGS Browser

Ruler indicates maximum coveragein display range

Rubberband indicates range displayed in 3 tracks

Overview 1,560 bp i
3 I I I I |
/ 500 1,000 1,500
Ruler /
784 bp
Ap 500 bp 500 bp ?DD bp BDD bp 900 bp 1, DDD bp 1, 100 bp|
1 1 1 1 1 1
I|I|IIIII|IIIIII|IIIIIIIIIIIIII|II|IIIII||I|-I Illlll IIIIIIIII IIIIIII | I|I|-I|I IIIIIIIII-I-IIIIII
= exl -
[ | [ 3
[ |
{ |
[l 1] |
| Il | 1l
Il |
| | |
| Il
| | I |
I | I Il
| I il |
Il | | |
| Il | |
| |
! I |
[ | |1 |
| | |
|1 | | [ ] Il
Il | |
[ | 2
El features r ] r T -

Browser Displaying Reference Track, One Alignment Track, and One Annotation Track

Import a Reference Sequence

You can import a single reference sequence into the NGS Browser. The reference
sequence must be in a FASTA file.
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1 Select File > Add Data from File.
2 In the Open dialog box, select a FASTA file, and then click Open.

Tip: You can use the getgenbank function with the ToFile and SequenceOnly name-

value pair arguments to retrieve a reference sequence from the GenBank database and
save it to a FASTA-formatted file.

Import Short-Read Alignment Data

You can import multiple data sets of short-read alignment data. The alignment data
must be in either of the following:

*  BioMap object

Tip: Construct a BioMap object from a SAM- or BAM-formatted file to investigate,
subset, and filter the data before importing it into the NGS Browser.

+ SAM- or BAM-formatted file

Note: Your SAM- or BAM-formatted file must:

+ Have reads ordered by start position in the reference sequence.

Have an IDX index file (for a SAM-formatted file) or BAI and LINEARINDEX
index files (for a BAM-formatted file) stored in the same location as your source
file. Otherwise, the source file must be stored in a location to which you have write
access, because MATLAB needs to create and store index files in this location.

Tip: Try using SAMtools to check if the reads in your SAM- or BAM-formatted file are
ordered by position in the reference sequence, and also to reorder them, if needed.

Tip: If you do not have index files (IDX or BAI and LINEARINDEX) stored in the
same location as your source file, and your source file is stored in a location to which
you do not have write access, you cannot import data from the source file directly
into the browser. Instead, construct a BioMap object from the source file using the
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IndexDir name-value pair argument, and then import the BioMap object into the
browser.

To import short-read alignment data:

1 Select File > Add Data from File or File > Import Alignment Data from
MATLAB Workspace.

2 Select a SAM-formatted file, BAM-formatted file, or BioMap object.

3 If you select a file containing multiple reference sequences, in the Select Reference
dialog box, select a reference or scan the file for available references and their
mapped reads counts. Click OK.

4 Repeat the previous steps to import additional data sets.
Import Feature Annotations

You can import multiple sets of feature annotations from GFF- or GTF-formatted files
that contain data for a single reference sequence.

1 Select File > Add Data from File.
2 In the Open dialog box, select a GFF- or GTF-formatted file, and then click Open.

3 Repeat the previous steps to import additional annotations.

Zoom and Pan to a Specific Region of the Alignment

To zoom in and out:

e
Use the R toolbar buttons,
or click-drag an edge of the rubberband in the Overview area.
. sapts
1,000

To pan across the alignment:

Use the @ toolbar buttons,
or click-drag the rubberband in the Overview area.

- - .
1,000 %}
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Tip: Use the left and right arrow keys to pan in one base pair (bp) increments.

View Coverage of the Reference Sequence

At the top of each alignment track, the coverage view displays the coverage of each
base in the reference sequence. The vertical ruler on the left edge of the coverage view
indicates the maximum coverage in the display range. Hover the mouse pointer over a
position in the coverage view to display the location and counts.

CcT CTTCCACOCTCTCATCT C TGCCACT TCCGC

r4s %
Counts: 45
Location: 896

Note: The browser computes coverage at the base pair resolution, instead of binning,
even when zoomed out.

To change the percent coverage displayed, click anywhere in the alignment track, and
then edit the Alignment Coverage settings.

Vertical viewing range(%a):

Min: 0
Mazx |00

Tip: Set Max to a value greater than 100, if needed, when comparing the coverage of
multiple tracks of reads.
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View the Pileup View of Short Reads

Each alignment track includes a pileup view of the short reads aligned to the reference
sequence.

T TCCCATTT CCCCTCT CCOTTCTATTTGOGT T C

Limit the depth of the reads displayed in the pileup view by setting the Maximum
display read depth in the Alignment Pileup settings.

Maximum display read depth: 1,000
Mapplng quality threshold:

B AW WP o J\I\f

Tip: Limiting the depth of short reads in the pileup view does not change the counts
displayed in the coverage view.
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Compare Alignments of Multiple Data Sets

Compare multiple data sets, with each data set in its own track, against a common
reference sequence. Use the Track List to show/hide, order, and delete tracks of data.

4\ NGS Browser
File Desktop Window Help

Center on Position: 155,537,955 e aa

Browser
Overview 150 mb il =3k

i Name Type Visible Dsta Source
20m room oM hs_ref_GRCh37.p2_chr? [Sequence | [@] |MAsandbox...
SIBMObj ShortRead..| [/ MATLABW..

151 bp <SBMObj ShortRead..] [@ |MATLABW..

155,537,581 bp 155,537,920 bp 155,557,940 bp 155,537,960 bp 155,537,960 bp 155,538,000 bp 155,538,020 bp

f=lte]

Ruler

pe-ret-GRCAT:02-.. M0 OMRO 0 OO B0 R AR TR A 2
4 -

E s1BMObj 1

1 1 Settings a x

Vertical viewing range(%):

1 Min: |0
! Max: [100

33
E s5BMObj 1| Maximum display read depth: 1,000

Mapping quality threshold: |20
- Flag duplicate reads
Flag reads with unmapped pair

i - [¥] Shade mismatch bases by Phred quality:
(Requires reference sequence)

1 Min: |2
Max: |39
- 7] Shou all bases (Requires sufficient zoom)

1 [T Color by strand:
- . - Forward reads

.

~ Reverse reads

1 Visible range for display (kb): 10
Show Overview
Specify nucleotide colors:

M-a E-C -G T N

Counts: 2 Base Pos 155,538,030
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View Location, Quality Scores, and Mapping Information

Hover the mouse pointer over a position in a read to display strand direction, location,
quality, and mapping information for the base, the read, and its paired mate.

Read name = EASL_95:7:55:506:125
Alignment start = 817 (+)

Cigar = 35M

Mapped = yes

Mapping quality = 99
Location: 822

Base=C

Base Phred quality = 60

Pair = EASL_95:7:55:508:125:0 (-)
Pair is mapped = yes

Flag Reads

Click anywhere in an alignment track to display the Alignment Pileup settings.
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Maximum display read depth: 1,000
Mapping quality threshold: |20

I - Flag duplicate reads

= Flag reads with unmapped pair
Shade rismatch bases by Phred quality:

(Requires reference sequence)

Min: |3
Max: |3p

[] Show all bases (Requires sufficient zoom)

[] Color by strand:
* Forward reads

* Reverse reads

Flag Reads with Low Mapping Quality

Set the Mapping quality threshold in the Alignment Pileup section to flag low-quality
reads. Reads with a mapping quality below this level appear in a lighter shade of gray.

Flag Duplicate Reads
Select Flag duplicate reads and select an outline color.
Flag Reads with Unmapped Pairs

Select Flag reads with unmapped pair and select an outline color.

Evaluate and Flag Mismatches
Mismatches display as colored blocks or letters, depending on the zoom level.

Zoomed out view of read — Mismatches display as bars
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C T C C T

Zoomed in view of read — Mismatches display as letters

In addition to the base Phred quality information that displays in the tooltip, you can
visualize quality differences by using the Shade mismatch bases by Phred quality

settings.
Shade rnismatch bases by Phred quality:
(Requires reference sequence]

Min: |3
Max: |3p

LW N SN SN N N N N N

The mismatch blocks or letters display in:

+ Light shade — Mismatch bases with Phred scores below the minimum

*  Graduation of medium shades — Mismatch bases with Phred scores within the
minimum to maximum range

* Dark shade — Mismatch bases with Phred scores above the maximum
View Insertions and Deletions
The NGS Browser designates insertions with a ! symbol. Hover the mouse pointer over

the insertion symbol to display information about it.

!

Read name = EASS0_65:1:163:846:223
Insertion: CATAG

The NGS Browser designates deletions with dashes.
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View Feature Annotations

After importing a feature annotation file, you can zoom and pan to view feature
annotations associated with a region of interest in the alignment. Hover the mouse
pointer over the feature annotation.

L

Location: 180,866 .. 181,324
Type: CDS

Score = 0.0

Parent: ¥38C1AA4

Source: curated

Print and Export the Browser Image

Print or export the browser image by selecting File > Print Image or File > Export
Image.
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Sequence Analysis

Sequence analysis is the process you use to find information about a nucleotide or amino
acid sequence using computational methods. Common tasks in sequence analysis are
identifying genes, determining the similarity of two genes, determining the protein coded

by a gene, and determining the function of a gene by finding a similar gene in another
organism with a known function.

“Exploring a Nucleotide Sequence Using Command Line” on page 3-2

“Exploring a Nucleotide Sequence Using the Sequence Viewer App” on page 3-20
+  “Explore a Protein Sequence Using the Sequence Viewer App” on page 3-35
“Compare Sequences Using Sequence Alignment Algorithms” on page 3-40

+ “View and Align Multiple Sequences” on page 3-58
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Exploring a Nucleotide Sequence Using Command Line

In this section...

“Overview of Example” on page 3-2

“Searching the Web for Sequence Information” on page 3-2
“Reading Sequence Information from the Web” on page 3-5
“Determining Nucleotide Composition” on page 3-6
“Determining Codon Composition” on page 3-10

“Open Reading Frames” on page 3-15

“Amino Acid Conversion and Composition” on page 3-17

Overview of Example

After sequencing a piece of DNA, one of the first tasks is to investigate the nucleotide
content in the sequence. Starting with a DNA sequence, this example uses sequence
statistics functions to determine mono-, di-, and trinucleotide content, and to locate open
reading frames.

Searching the Web for Sequence Information

The following procedure illustrates how to use the MATLAB Help browser to search

the Web for information. In this example you are interested in studying the human
mitochondrial genome. While many genes that code for mitochondrial proteins are found
in the cell nucleus, the mitochondrial has genes that code for proteins used to produce
energy.

First research information about the human mitochondria and find the nucleotide
sequence for the genome. Next, look at the nucleotide content for the entire sequence.
And finally, determine open reading frames and extract specific gene sequences.

1 Use the MATLAB Help browser to explore the Web. In the MATLAB Command
Window, type

web(*http://www.ncbi.nIm_nih.gov/*)

A separate browser window opens with the home page for the NCBI Web site.
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2 Search the NCBI Web site for information. For example, to search for the human
mitochondrion genome, from the Search list, select Genome , and in the Search list,
enter mitochondrion homo sapiens.

."--." MNCBl Resources ;] HowTo [

N C B J Search | Genome =l

|mrtoc:hondnon homo sapiens Search [E#EEY

canR L r:;“\"t”:
us,hn_“ " sGenome

Genome Structure OMIM PMC

Protein

Search | Genome ;I far |m'rtoc:hondrion homo sapisns| Go | Clear | Save Search
r Limitz T Preview/Index T History T Clipboard T Detailz \I
Display | Summary =l shew |20 |=||Sendto =]

*
All: 49
Items 1 - 20 of 43 Page ”1 of 3 Mext

[T1: NC 003415 Links
Ancylostoma duodenale mitochondrion, complete genome
DMA; circular; Length: 13,721 nt

COrganelle: mitochondrion
Created: 2002/02/21

3 Select a result page. For example, click the link labeled NC_012920.

The MATLAB Help browser displays the NCBI page for the human mitochondrial
genome.
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"ok ¢ S5

_‘ ‘ ez My NCBI
ushil 1! '-:Genome Sign In] [Reaister]
lectide Protein Genome Structure OMIM PMC

Search | Genome | for | Go | Clearl

r Limitz T Preview/Index T History T Clipkoard T Detailz ]

Dizplay |Overvie',\' | show |23 ;”Sendto =l
All: 1 \

Journals

Genome = Eukaryota > Homo sapiens mitochondrion, complete genome Links

Lineage: Eukaryota; Fungi/Metazoa group; Metazoa; Eumetazoa; Bilateria; Coelomata; Deuterostomia: Chordata: Craniata; Vertebrata: Gnathostomata;
Teleostomi: Euteleostomi: Sarcopteryqii: Tetrapoda: Amniota: Mammalia: Theria; Eutheria; Euarchontoglires: Primates: Haplorrhini: Simiiformes; Catarrhini;
Hominoidea; Hominidae; Homininae: Homo; Homo sapiens

Genome Info: | Features: HLAET Links: Review Info:
homologs:
e, Genes: 37 Genome Project Fublications: [2]

MNC_012920

GenBank: Frotein .

101415 coding: 13 Refseq Status: PROVISIONAL
Length: Structural .

16,569 nt RNAs: 24 TaxPlot Seq.Status: Completed

Sequencing center: Center for Maolecular and Mitochondrial

GC Content: Pseudo

: IMedicine and Genetics ( University of California.
4 : L
g IETEE LTS University of California, Irvine, Mitomap.org, USA, Ivine
0, ina:
;’SEDU'”Q' Others: 30 Completed: 2009/07/08
K ]
Topology: Contigs:
circular HNone
Malecule: Other genomes for
dsDNA species: 683
Gene Classification based on COG functional categaries Search gene, GenelD aor Iocus_tag:l Find Gene |
< . > 1ssag)lnt
1nt 5,511 nt A - - /
> > — - __
> P, A
| ___RNROT 44 RNR2 4 > e ~
< I

Click here for Sequence Viewer presentation (base sequence and aligned amino acids) of selected region

Display | Overview | show |23 ;”Sendto =l
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Reading Sequence Information from the Web

The following procedure illustrates how to find a nucleotide sequence in a public
database and read the sequence information into the MATLAB environment. Many
public databases for nucleotide sequences are accessible from the Web. The MATLAB
Command Window provides an integrated environment for bringing sequence
information into the MATLAB environment.

The consensus sequence for the human mitochondrial genome has the GenBank
accession number NC_012920. Since the whole GenBank entry is quite large and you
might only be interested in the sequence, you can get just the sequence information.

1 Get sequence information from a Web database. For example, to retrieve sequence
information for the human mitochondrial genome, in the MATLAB Command
Window, type

mitochondria = getgenbank(*NC_012920", "SequenceOnly*" ,true)

The getgenbank function retrieves the nucleotide sequence from the GenBank
database and creates a character array.

mitochondria =
GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCAT
TTGGTATTTTCGTCTGGGGGGTGTGCACGCGATAGCATTGCGAGACGCTG
GAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCTCATT
CTATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACCTACTA
AAGT .

2 Ifyou don't have a Web connection, you can load the data from a MAT file included
with the Bioinformatics Toolbox software, using the command

load mitochondria

The load function loads the sequence mitochondria into the MATLAB Workspace.

3 Get information about the sequence. Type
whos mitochondria

Information about the size of the sequence displays in the MATLAB Command
Window.

Name Size Bytes Class Attributes
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mitochondria 1x16569 33138 char

Determining Nucleotide Composition

The following procedure illustrates how to determine the monomers and dimers, and
then visualize data in graphs and bar plots. Sections of a DNA sequence with a high
percent of A+T nucleotides usually indicate intergenic parts of the sequence, while low A
+T and higher G+C nucleotide percentages indicate possible genes. Many times high CG
dinucleotide content is located before a gene.

After you read a sequence into the MATLAB environment, you can use the sequence
statistics functions to determine if your sequence has the characteristics of a protein-
coding region. This procedure uses the human mitochondrial genome as an example. See
“Reading Sequence Information from the Web” on page 3-5.

1  Plot monomer densities and combined monomer densities in a graph. In the
MATLAB Command Window, type

ntdensity(mitochondria)

This graph shows that the genome is A+T rich.
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Nucleotide density

01 1
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Count the nucleotides using the basecount function.

basecount(mitochondria)

A list of nucleotide counts 1s shown for the 5'-3' strand.

ans
5124
5181
2169
4094

O 0>l

Count the nucleotides in the reverse complement of a sequence using the
seqrcomplement function.

basecount(seqgrcomplement(mitochondria))
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As expected, the nucleotide counts on the reverse complement strand are
complementary to the 5'-3' strand.

ans =
A: 4094
C: 2169
G: 5181
T: 5124
4  Use the function basecount with the chart option to visualize the nucleotide
distribution.
figure

basecount(mitochondria, "chart®,"pie”);

A pie chart displays in the MATLAB Figure window.

5 Count the dimers in a sequence and display the information in a bar chart.
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figure
dimercount(mitochondria, "chart”, "bar")

ans

AA:
AC:
AG:
AT:
CA:
CC:
CG:
CT:
GA:
GC:
GG:
GT:
TA:
TC:
TG:
TT:

1604
1495
795
1230
1534
1771
435
1440
613
711
425
419
1373
1204
513
1004
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2000 .

1500 |

1000

First Base A

Second Base

Determining Codon Composition

The following procedure illustrates how to look at codons for the six reading frames.
Trinucleotides (codon) code for an amino acid, and there are 64 possible codons in a
nucleotide sequence. Knowing the percent of codons in your sequence can be helpful
when you are comparing with tables for expected codon usage.

After you read a sequence into the MATLAB environment, you can analyze the sequence
for codon composition. This procedure uses the human mitochondria genome as an
example. See “Reading Sequence Information from the Web” on page 3-5.

1  Count codons in a nucleotide sequence. In the MATLAB Command Window, type
codoncount(mitochondria)

The codon counts for the first reading frame displays.
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AAA - 167 AAC - 171 AAG - 71 AAT - 130
ACA - 137 ACC - 191 ACG - 42 ACT - 153
AGA - 59 AGC - 87 AGG - 51 AGT - 54
ATA - 126 ATC - 131 ATG - 55 ATT - 113
CAA - 146 CAC - 145 CAG - 68 CAT - 148
CCA - 141 CCC - 205 CCG - 49 CCT - 173
CGA - 40 CGC - 54 CGG - 29 CGT - 27
CTA - 175 CTC - 142 CTG - 74 CTT - 101
GAA - 67 GAC - 53 GAG - 49 GAT - 35
GCA - 81 GCC - 101 GCG - 16 GCT - 59
GGA - 36 GGC - 47 GGG - 23 GGT - 28
GTA - 43 GTC - 26 GTG - 18 GTT - 41
TAA - 157 TAC - 118 TAG - 94 TAT - 107
TCA - 125 TCC - 116 TCG - 37 TCT - 103
TGA - 64 TGC - 40 TGG - 29 TGT - 26
TTA - 96 TTC - 107 TTG - 47 TTT - 78

Count the codons in all six reading frames and plot the results in heat maps.

for frame = 1:3
figure
subplot(2,1,1);
codoncount(mitochondria, "frame®,frame, "figure” ,true, ...
"geneticcode”, "Vertebrate Mitochondrial™);
title(sprintf("Codons for frame %d",frame));
subplot(2,1,2);
codoncount(mitochondria, "reverse” ,true, "frame®,frame, . ..
“figure”,true, "geneticcode”, "Vertebrate Mitochondrial®);
title(sprintf("Codons for reverse frame %d-",frame));
end

Heat maps display all 64 codons in the 6 reading frames.
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Codons for frame 1

AMA | AAC | ACA ACC | CAA | CAC | CCA  ccC 200
150
100
50

Genetic Code: Verebrate Mitochondrial
Codons for reverse frame 1

200
150
100
50

GGG GGT | GTG GTT | TGG | TGT | TTIG | T1T
Genetic Code: Verebrate Mitochondrial
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Codons for frame 2

200

150

100

Genetic Code: Vertebrate Mitochondrial

Codons for reverse frame 2
200

150

100

50

GGG GGT | GTG GTT | TGG | TGT | TTG
Genetic Code: Verebrate Mitochondrial
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Codons for frame 3

200

AAA | AAC | ACA ACC | CAA | CAC | CCA CCC

150

100

50

Genetic Code: Verebrate Mitochandrial

Codons for reverse frame 3

200

150

100

50

Genetic Code: Verebrate Mitochandrial
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Open Reading Frames

The following procedure illustrates how to locate the open reading frames using a specific
genetic code. Determining the protein-coding sequence for a eukaryotic gene can be

a difficult task because introns (noncoding sections) are mixed with exons. However,
prokaryotic genes generally do not have introns and mRNA sequences have the introns
removed. Identifying the start and stop codons for translation determines the protein-
coding section, or open reading frame (ORF), in a sequence. Once you know the ORF for
a gene or mRNA, you can translate a nucleotide sequence to its corresponding amino acid
sequence.

After you read a sequence into the MATLAB environment, you can analyze the sequence
for open reading frames. This procedure uses the human mitochondria genome as an
example. See “Reading Sequence Information from the Web” on page 3-5.

1 Display open reading frames (ORFs) in a nucleotide sequence. In the MATLAB
Command Window, type:

segshoworfs(mitochondria);

If you compare this output to the genes shown on the NCBI page for NC_012920,
there are fewer genes than expected. This is because vertebrate mitochondria use
a genetic code slightly different from the standard genetic code. For a list of genetic
codes, see the Genetic Code table in the aa2nt reference page.

2 Display ORFs using the Vertebrate Mitochondrial code.

orfs= seqgshoworfs(mitochondria,. ..
"GeneticCode", "Vertebrate Mitochondrial™, ...
"alternativestart”,true);

Notice that there are now two large ORF's on the third reading frame. One starts

at position 4470 and the other starts at 5904. These correspond to the genes ND2
(NADH dehydrogenase subunit 2 [Homo sapiens] ) and COX1 (cytochrome c oxidase
subunit I) genes.

3 Find the corresponding stop codon. The start and stop positions for ORFs have the
same indices as the start positions in the fields Start and Stop.

ND2Start = 4470;
Startindex = find(orfs(3).Start == ND2Start)
ND2Stop = orfs(3).Stop(Startindex)

The stop position displays.
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ND2Stop =

5511
Using the sequence indices for the start and stop of the gene, extract the
subsequence from the sequence.

ND2Seq = mitochondria(ND2Start:ND2Stop)

The subsequence (protein-coding region) is stored in ND2Seq and displayed on the
screen.

attaatcccctggcccaacccgtcatctactctaccatctttgcaggeac
actcatcacagcgctaagctcgcactgattttttacctgagtaggcctag
aaataaacatgctagcttttattccagttctaaccaaaaaaataaaccct
cgttccacagaagctgccatcaagtatttcctcacgcaagcaaccgeatc
cataatccttc . . .

Determine the codon distribution.

codoncount (ND2Seq)

The codon count shows a high amount of ACC, ATA, CTA, and ATC.

AAA - 10 AAC - 14 AAG - 2 AAT - 6
ACA - 11 ACC - 24 ACG - 3 ACT - 5
AGA - O AGC - 4 AGG - O AGT - 1
ATA - 23 ATC - 24 ATG - 1 ATT - 8
CAA - 8 CAC - 3 CAG - 2 CAT - 1
CCA - 4 CCC - 12 cCG - 2 CCT - 5
CGA - O CGC - 3 CGG - O CGT - 1
CTA - 26 CTC - 18 CTG - 4 CTT - 7
GAA - 5 GAC - O GAG - 1 GAT - O
GCA - 8 GCC - 7 GCG - 1 GCT - 4
GGA - 5 GGC - 7 GGG - O GGT - 1
GTA - 3 GTC - 2 GTG - O GTT - 3
TAA - O TAC - 8 TAG - O TAT - 2
TCA - 7 TCC - 11 TCG - 1 TCT - 4
TGA - 10 TGC - O TGG - 1 TGT - O
TTA - 8 TTC - 7 T76 - 1 TTT - 8

Look up the amino acids for codons ATA, CTA, ACC, and ATC.

aminolookup("code” ,nt2aa("ATA"))
aminolookup("code” ,nt2aa("CTA"))
aminolookup("code*” ,nt2aa("ACC*"))
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aminolookup("code” ,nt2aa("ATC"))

The following displays:

Ile isoleucine
Leu leucine

Thr threonine
Ile isoleucine

Amino Acid Conversion and Composition

The following procedure illustrates how to extract the protein-coding sequence from a
gene sequence and convert it to the amino acid sequence for the protein. Determining the
relative amino acid composition of a protein will give you a characteristic profile for the
protein. Often, this profile is enough information to identify a protein. Using the amino
acid composition, atomic composition, and molecular weight, you can also search public
databases for similar proteins.

After you locate an open reading frame (ORF) in a gene, you can convert it to an amino
sequence and determine its amino acid composition. This procedure uses the human
mitochondria genome as an example. See “Open Reading Frames” on page 3-15.

1

Convert a nucleotide sequence to an amino acid sequence. In this example, only the
protein-coding sequence between the start and stop codons is converted.

ND2AASeq = nt2aa(ND2Seq, "geneticcode”, ...
"Vertebrate Mitochondrial™)

The sequence is converted using the Vertebrate Mitochondrial genetic code.
Because the property AlternativeStartCodons is set to "true” by default, the
first codon att is converted to M instead of 1.

MNPLAQPVIYSTIFAGTLITALSSHWFFTWVGLEMNMLAF IPVLTKKMNP
RSTEAAIKYFLTQATASMILLMATLFNNMLSGQWTMTNTTNQYSSLMIMM
AMAMKLGMAPFHFWVPEVTQGTPLTSGLLLLTWQKLAPISIMYQISPSLN
VSLLLTLSILSIMAGSWGGLNQTQLRKILAYSS I THMGWMMAVLPYNPNM
TILNLTIYDILTTTAFLLLNLNSSTTTLLLSRTWNKLTWLTPLIPSTLLS
LGGLPPLTGFLPKWAIIEEFTKNNSLIIPTIMATITLLNLYFYLRLIYST
SITLLPMSNNVKMKWQFEHTKPTPFLPTLIALTTLLLPISPFMLMIL

Compare your conversion with the published conversion in the GenPept database.

ND2protein = getgenpept("YP_003024027", "sequenceonly” ,true)
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The getgenpept function retrieves the published conversion from the NCBI
database and reads it into the MATLAB Workspace.

3 Count the amino acids in the protein sequence.

aacount(ND2AASeq, "chart®,"bar")

A bar graph displays. Notice the high content for leucine, threonine and isoleucine,
and also notice the lack of cysteine and aspartic acid.

70

60

50

40t

30

20+

101

ARNDCQEGH I L KMFPSTWYV

4 Determine the atomic composition and molecular weight of the protein.

atomiccomp(ND2AASeq)
molweight (ND2AASeq)

The following displays in the MATLAB Workspace:
ans =
- 1818

: 2882
: 420

ZITO
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0: 471
S: 25

ans
3.8960e+004

If this sequence was unknown, you could use this information to identify the protein
by comparing it with the atomic composition of other proteins in a database.
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Exploring a Nucleotide Sequence Using the Sequence Viewer App
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In this section...

“Overview of the Sequence Viewer” on page 3-20

“Importing a Sequence into the Sequence Viewer” on page 3-20
“Viewing Nucleotide Sequence Information” on page 3-23
“Searching for Words” on page 3-27

“Exploring Open Reading Frames” on page 3-29

“Closing the Sequence Viewer” on page 3-34

Overview of the Sequence Viewer

The Sequence Viewer integrates many of the sequence functions in the Bioinformatics
Toolbox toolbox. Instead of entering commands in the MATLAB Command Window, you
can select and enter options using the app.

Importing a Sequence into the Sequence Viewer

The first step when analyzing a nucleotide or amino acid sequence is to import sequence
information into the MATLAB environment. The Sequence Viewer can connect to
Web databases such as NCBI and EMBL and read information into the MATLAB
environment.

The following procedure illustrates how to retrieve sequence information from the NCBI
database on the Web. This example uses the GenBank accession number NM_000520,
which is the human gene HEXA that is associated with Tay-Sachs disease.

Note: Data in public repositories is frequently curated and updated; therefore, the results
of this example might be slightly different when you use up-to-date sequences.

1 Inthe MATLAB Command Window, type

segviewer

Alternatively, click Sequence Viewer on the Apps tab.
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The Sequence Viewer opens without a sequence loaded. Notice that the panes to
the right and bottom are blank.

To retrieve a sequence from the NCBI database, select File > Download Sequence
from > NCBI.

The Download Sequence from NCBI dialog box opens.

-~

Downlead Sequence from MNCEI | 28 |
Enter Sequence Accession Mumber or Locus Name
@ Mucleotide () Protein
Ok ] ’ Cancel

In the Enter Sequence box, type an accession number for an NCBI database entry,
for example, NM_000520. Click the Nucleotide option button, and then click OK.

The MATLAB software accesses the NCBI database on the Web, loads nucleotide

sequence information for the accession number you entered, and calculates some
basic statistics.
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Viewing Nucleotide Sequence Information

After you import a sequence into the Sequence Viewer app, you can read information
stored with the sequence, or you can view graphic representations for ORFs and CDSs.

1 In the left pane tree, click Comments. The right pane displays general information
about the sequence.

2 Now click Features. The right pane displays NCBI feature information, including
index numbers for a gene and any CDS sequences.

3  Click ORF to show the search results for ORF's in the six reading frames.
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p
4 Biclogical Sequence Viewer - NM_000520

=)

File Edit Sequence Display Window Help [ & x
3 ey ) . .
ltD‘J“Q|‘*E|a|@-‘| Line length: |60 EE[DEE@
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18l cecgttotte togagtodggy CUAgotygtot agttocatca COOoCcgOoac ggocacadad
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-z 2
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4 Click Annotated CDS to show the protein coding part of a nucleotide sequence.
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Searching for Words

You can also search for characteristic words or sequence patterns using regular
expressions. You can enter the ITUB/IUPAC nucleotide and amino acid symbols that are
automatically converted to corresponding nucleotides and amino acids accordingly. For
details about how symbols are interpreted, see the Nucleotide Conversion and Amino
Acid Conversion tables of seq2regexp. For instance, if you search for the word "TAR"
with the Regular Expression box checked, the app highlights all the occurrences of
"TAA™ and "TAG" in the sequence since R = [AG].

1 Select Sequence > Find Word.

2 In the Find Word dialog box, type a sequence word or pattern, for example, atg, and
then click Find.

Find Ward 2

Enter a Word:
atg

| Regular Expression

[ Find l | Cancel |

The Sequence Viewer searches and displays the location of the selected word.
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Clear the display by clicking the Clear Word Selection button | & | on the toolbar.

Exploring Open Reading Frames

The following procedure illustrates how to identify the protein coding part of a nucleotide
sequence and copy it into a new view. Identifying coding sections of a nucleotide sequence
1s a common bioinformatics task. After locating the coding part of a sequence, you can
copy it to a new view, translate it to an amino acid sequence, and continue with your

analysis.

1 In the left pane, click ORF.

The Sequence Viewer displays the ORF's for the six reading frames in the lower-
right pane. Hover the cursor over a frame to display information about it.

4.7 BP/Pixel [ ) X2 Zoom in l [ (=}, X2 Zoom out ]
Map View 1 1000 2000 2751 *
| 1 | I

Sequence |~

— »—[\,\}-—)l—:\- b= b P 3
ORF = <4 «|Frame: 1, StartBP: 502, EndBP: 2089, Length: 1588 |

i “— 1 =
| —_— ey i A
CcDs il
w||4 1 | »

2  Click the longest ORF on reading frame 2.

The ORF is highlighted to indicate the part of the sequence that is selected.
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3 Right-click the selected ORF and then select Export to Workspace. In the
Export to MATLAB Workspace dialog box, type a variable name, for example,

NM_000520_ORF_2, then click Export.

-~

Export to MATLAE Workspace

BE)

Enter a Variable Mame:

MM_000520_0ORF_2

Export

||

Cancel

L

A

The NM_000520_ORF_2 variable is added to the MATLAB Workspace.

4 Select File > Import from Workspace. Type the name of a variable with an

exported ORF, for example, NM_000520_ORF_2, and then click Import.

The Sequence Viewer adds a tab at the bottom for the new sequence while leaving

the original sequence open.
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5 In the left pane, click Full Translation. Select Display > Amino Acid Residue
Display > One Letter Code.

The Sequence Viewer displays the amino acid sequence below the nucleotide
sequence.
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Closing the Sequence Viewer

Close the Sequence Viewer from the MATLAB command line using the following
syntax:

seqviewer(“close™)
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Explore a Protein Sequence Using the Sequence Viewer App

In this section...

“Overview of the Sequence Viewer” on page 3-35
“Viewing Amino Acid Sequence Statistics” on page 3-35
“Closing the Sequence Viewer” on page 3-39

“References” on page 3-39

Overview of the Sequence Viewer

The Sequence Viewer integrates many of the sequence functions in the Bioinformatics
Toolbox toolbox. Instead of entering commands in the MATLAB Command Window, you
can select and enter options using the app.

Viewing Amino Acid Sequence Statistics

The following procedure illustrates how to view an amino acid sequence for an ORF
located in a nucleotide sequence. You can import your own amino acid sequence, or
you can get a protein sequence from the GenBank database. This example uses the
GenBank accession number NP_000511.1, which is the alpha subunit for a human
enzyme associated with Tay-Sachs disease.

1 Select File > Download Sequence from > NCBI.

The Download Sequence from NCBI dialog box opens.

2 In the Enter Sequence box, type an accession number for an NCBI database entry,
for example, NP_000511.1. Click the Protein option button, and then click OK.
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Download Sequence from NCEI ﬁ

Enter Sequence Accession Mumber or Locus Name

MP_000511.1

) Nucleotide @ Protein

QK ] ’ Cancel

The Sequence Viewer accesses the NCBI database on the Web and loads amino
acid sequence information for the accession number you entered.

3-36



Explore a Protein Sequence Using the Sequence Viewer App

Amino Acid Count

4\ Biclogical Sequence Viewer - NP_000511 S| E i)
File Edit Sequence Display Window Help A x
LARNS fle Line length: [60 | EDEs0
Sequence View NP_000511: hexosaminidase A preproprotein [Homo sapiens]
N=P_000511:hexosam|mdas Pasition: 529 aa
S g
Features 10 20 20 40 50 &0
L.Comments TR T T TR BT BT T T BT
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61 ldeafgryrd llfgsgswpr pyltgkrhtl eknvlvvawy tpgonglptl esvenytlti
121 nddgelllse tvwgalrgle tfsglvwksa egtffinkte iedfprfphr gllldtsrhy
181 lIplssildtl dvmaynklnv fhwhlvddps fpyesftfpe Imrkgsynpv thiytagdvk
241 ewvieyarlryg irvlaefdtp ghtlswgpgl pglltpcysg sepsgtfgpv npslnntyef
301 mwstfflewss wipdfylhlyg gdevdftcwk snpeigdfmr kkgfgedfkg lesfyigrll
361 divssygkgy wvwgevEdnk vkigpdtiig wwredipvny mkelelvtka gfrallsapw
421 ylnrisygpd wkdfyvwvepl afegtpegka lviggeacnw geywdntnlv prlwpragaw
481 aerlwsnklt sdltfayerl shfrcellrr gvgagplnvg foegefegt
« [ 3
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Sequence

-]« i

Untitled = [ NP_000511

Select Display > Amino Acid Color Scheme, and then select Charge, Function,

Hydrophobicity, Structure, or Taylor. For example, select Function.

The display colors change to highlight charge information about the amino acid

residues. The following table shows color legends for the amino acid color schemes.
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4\ Biclogical Sequence Viewer - NP_000511 [=[=] = ]
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Amino Acid Color Scheme

Col

or Legend

Charge

Acidic — Red
Basic — Light Blue
Neutral — Black

Function

Acidic — Red
Basic — Light Blue
Hydropobic, nonpolar — Black

Polar, uncharged — Green

Hydrophobicity

Hydrophilic — Light Blue
Hydrophobic — Black
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Amino Acid Color Scheme Color Legend
Structure +  Ambivalent — Dark Green
External — Light Blue

+ Internal — Orange

Taylor Each amino acid is assigned its own color, based
on the colors proposed by W.R. Taylor.

Closing the Sequence Viewer

Close the Sequence Viewer from the MATLAB command line using the following
syntax:

segviewer(“close™)

References

[1] Taylor, W.R. (1997). Residual colours: a proposal for aminochromography. Protein
Engineering 10, 7, 743-746.
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Compare Sequences Using Sequence Alignment Algorithms

3-40

In this section...

“Overview of Example” on page 3-40

“Find a Model Organism to Study” on page 3-40

“Retrieve Sequence Information from a Public Database” on page 3-42
“Search a Public Database for Related Genes” on page 3-44

“Locate Protein Coding Sequences” on page 3-46

“Compare Amino Acid Sequences” on page 3-49

Overview of Example

Determining the similarity between two sequences is a common task in computational
biology. Starting with a nucleotide sequence for a human gene, this example uses
alignment algorithms to locate and verify a corresponding gene in a model organism.

Find a Model Organism to Study

In this example, you are interested in studying Tay-Sachs disease. Tay-Sachs is an
autosomal recessive disease caused by the absence of the enzyme beta-hexosaminidase
A (Hex A). This enzyme is responsible for the breakdown of gangliosides (GM2) in brain
and nerve cells.

First, research information about Tay-Sachs and the enzyme that is associated with this
disease, then find the nucleotide sequence for the human gene that codes for the enzyme,
and finally find a corresponding gene in another organism to use as a model for study.

1 Use the MATLAB Help browser to explore the Web. In the MATLAB Command
window, type

web("http://www.ncbi._nIm_nih.gov/books/NBK22250/ ")

The MATLAB Help browser opens with the Tay-Sachs disease page in the Genes
and Diseases section of the NCBI web site. This section provides a comprehensive
introduction to medical genetics. In particular, this page contains an introduction
and pictorial representation of the enzyme Hex A and its role in the metabolism of
the lipid GM2 ganglioside.
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- | =Y | 'Y | Location: | http://www.ncbi.nlm.nih.gov/books/NBK22250
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Sachs disease, the alpha subunit of
hexosaminidase malfunctions, leading to a
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lysosyme. [Adapted from: Chavany, C. and
Jendoubi, M. (1998) Mol. Med. Today, 4: 158-
165, with permission.]
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Tay-Sachs disease, a heritable metabolic disorder commonly associated with Ashkenazi Jews, has also been
found in the French Canadians of Southeastern Quebec, the Cajuns of Southwest Louisiana, and other
populations throughout the world. The severity of expression and the age at onset of Tay-Sachs varies from

infantile and juvenile forms that exhibit paralysis, dementia, blindness and early death to a chronic adult form

that exhibits neuron dysfunction and psychosis.

i .| Genes and Disease [Internet].
i " National Center for
Biotechnology Information
(Us).
| Show details

|

Table of Contents Page | Cite this Page

Download
PDF version of this page (261K)

Gene sequence
Genome view see gene locations
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The literature
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Books online books section
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GeneReviews a medical genetics resource
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Fact Sheet from National Institute of Neurological
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2 After completing your research, you have concluded the following:

The gene HEXA codes for the alpha subunit of the dimer enzyme hexosaminidase
A (Hex A), while the gene HEXB codes for the beta subunit of the enzyme. A third
gene, GM2A, codes for the activator protein GM2. However, it is a mutation in the

gene HEXA that causes Tay-Sachs.

3-41



3 Sequence Analysis

3-42

Retrieve Sequence Information from a Public Database

The following procedure illustrates how to find the nucleotide sequence for a human gene
in a public database and read the sequence information into the MATLAB environment.
Many public databases for nucleotide sequences (for example, GenBank, EMBL-EBI)

are accessible from the Web. The MATLAB Command Window with the MATLAB Help
browser provide an integrated environment for searching the Web and bringing sequence
information into the MATLAB environment.

After you locate a sequence, you need to move the sequence data into the MATLAB
Workspace.

1

Open the MATLAB Help browser to the NCBI Web site. In the MATLAB Command
Widow, type

web("http://www.ncbi._nIm_nih.gov/")

The MATLAB Help browser window opens with the NCBI home page.

Search for the gene you are interested in studying. For example, from the Search
list, select Nucleotide, and in the for box enter Tay-Sachs.

:3 NCBI  Resources ™ How To &

Nucleotide Nucleotide v |Tay-Sachs

Save search  Limits  Advanced

The search returns entries for the genes that code the alpha and beta subunits of the
enzyme hexosaminidase A (Hex A), and the gene that codes the activator enzyme.
The NCBI reference for the human gene HEXA has accession number NM_000520.
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Nucleotide Nucleotide  ~ Tay-Sachs |
Save search Limits Advanced
Display Settings: [~] Summary, 20 per page, Sorted by Default order Send to:

© Found 23006 nucleotide sequences. Mucleotide (60) GSS (27346)

Results: 1 to 20 of 60 Page 1  of3 MNext> Last=»

[F] HEXA {HEXA4bpDeltass mutation, exon 11} [numan, Tay-Sachs disease patient. mRNA Partial Mutant, 84 nf]
1 84 bp linear mRNA

Accession: S765984.1 Gl 912781
GenBank FASTA  Graphics

=l HEXA {HEXAdeltass mutation, exon 11} [human, Tay-Sachs disease patient, mRNA Partial Mutant, 80 ni]
2 80 bp linear mRNA

Accession: STE9821 GL 912780

GenBank FASTA  Graphics

[F] HEXA {HEXA4bp mutation, exon 11} [human, Tay-Sachs disease patient, MRNA Partial Mutant, 84 nf]
3. 84 bp linear mRNA

Accession: S77043.1 GI 912779
GenBank FASTA  Graphics

=l HEXA {HEXA4bpDeltaA mutation, exon 11} [numan, Tay-Sachs disease paftient, mENA Partial Mutant, 78 nt]
4 78 bp linear mRNA

Accession: STEE801 GL M2777

GenBank FASTA  Graphics

[F] Human beta-hexosaminidase A alpha-chain (with the classic form Tay-Sachs delefion) gene, partial cds
5 351 bp linear DNA

Accession: J02820.1 GI: 184482
GenBank FASTA Graphics Related Sequences

[ Homo sapiens hexosaminidase A (alpha polypeptide) (HEXA), mRENA
£ 2,437 bp linear mRNA

Accession: NM_0D00520 .4 Gl: 189181665
GenBank FASTA  Graphics Related Sequences

3 Get sequence data into the MATLAB environment. For example, to get sequence
information for the human gene HEXA, type
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humanHEXA = getgenbank(*NM_000520%)

Note: Blank spaces in GenBank accession numbers use the underline character.
Entering "NM 00520" returns the wrong entry.

The human gene is loaded into the MATLAB Workspace as a structure.
humanHEXA =

LocusName: *"NM_000520*
LocusSequencelLength: "2255*
LocusNumberofStrands: **
LocusTopology: "linear”
LocusMoleculeType: "mRNA*®
LocusGenBankDivision: "PRI*
LocusModificationDate: "13-AUG-2006"
Definition: "Homo sapiens hexosaminidase A (alpha polypeptide) (HEXA), mRNA.*
Accession: "NM_000520"
Version: "NM_000520.2*
Gl: "13128865"
Project: []
Keywords: []
Segment: []
Source: “"Homo sapiens (human)*®
SourceOrganism: [4x65 char]
Reference: {1x58 cell}
Comment: [15x67 char]
Features: [74x74 char]
CDS: [1x1 struct]
Sequence: [1x2255 char]
SearchURL: [1x108 char]
RetrieveURL: [1x97 char]

Search a Public Database for Related Genes

The following procedure illustrates how to find the nucleotide sequence for a mouse

gene related to a human gene, and read the sequence information into the MATLAB
environment. The sequence and function of many genes is conserved during the evolution
of species through homologous genes. Homologous genes are genes that have a common
ancestor and similar sequences. One goal of searching a public database is to find

similar genes. If you are able to locate a sequence in a database that is similar to your
unknown gene or protein, it is likely that the function and characteristics of the known
and unknown genes are the same.

After finding the nucleotide sequence for a human gene, you can do a BLAST search or
search in the genome of another organism for the corresponding gene. This procedure
uses the mouse genome as an example.
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1 Open the MATLAB Help browser to the NCBI Web site. In the MATLAB Command
window, type

web("http://www._ncbi._nIm_nih_gov®)

2 Search the nucleotide database for the gene or protein you are interested in
studying. For example, from the Search list, select Nucleotide, and in the for box
enter hexosaminidase A.

The search returns entries for the mouse and human genomes. The NCBI reference
for the mouse gene HEXA has accession number AKO80777.

] Mus musculus 8.5 days embryo parthenogenote cDNA, RIKEN full-length enriched library, clone:B130019N09
417, Product:hexosaminidase A, full insert sequence

1,839 bp linear mRNA

Accession: [TOENEE 1 Gl 26348756

GenBank FASTA Graphics Related Sequences

3 Get sequence information for the mouse gene into the MATLAB environment. Type

mouseHEXA = getgenbank("AK080777")

The mouse gene sequence is loaded into the MATLAB Workspace as a structure.

mouseHEXA =
LocusName: *AKO080777*
LocusSequencelLength: "1839*"
LocusNumberofStrands: "~
LocusTopology: "linear”
LocusMoleculeType: "mRNA*®
LocusGenBankDivision: "HTC"

LocusModificationDate:

"02-SEP-2005"

Definition: [1x150 char]
Accession: "AK080777"
Version: "AKO080777.1"
Gl: "26348756"
Project: []
Keywords: "HTC; CAP trapper.”
Segment: []
Source: "Mus musculus (house mouse)*
SourceOrganism: [4x65 char]
Reference: {1x8 cell}
Comment: [8x66 char]
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Features: [33x74 char]
CDS: [1x1 struct]
Sequence: [1x1839 char]
SearchURL: [1x107 char]
RetrieveURL: [1x97 char]

Locate Protein Coding Sequences

The following procedure illustrates how to convert a sequence from nucleotides to amino
acids and identify the open reading frames. A nucleotide sequence includes regulatory
sequences before and after the protein coding section. By analyzing this sequence, you
can determine the nucleotides that code for the amino acids in the final protein.

After you have a list of genes you are interested in studying, you can determine the
protein coding sequences. This procedure uses the human gene HEXA and mouse gene
HEXA as an example.

1

If you did not retrieve gene data from the Web, you can load example data from
a MAT-file included with the Bioinformatics Toolbox software. In the MATLAB
Command window, type

load hexosaminidase

The structures humanHEXA and mouseHEXA load into the MATLAB Workspace.

Locate open reading frames (ORF's) in the human gene. For example, for the human
gene HEXA, type

humanORFs = seqshoworfs(humanHEXA.Sequence)

seqshoworfs creates the output structure humanORFs. This structure contains
the position of the start and stop codons for all open reading frames (ORF's) on each
reading frame.

humanORFs =
1x3 struct array with fields:

Start
Stop

The Help browser opens displaying the three reading frames with the ORF's colored
blue, red, and green. Notice that the longest ORF is in the first reading frame.
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Frame 1

000001 agttgcocgacgocoggocacaatcogotgecacgtagocaggagectcaggbccaggeococggaagtga
000065 aagggcagggtgtgggtecctoctggggtocgocaggegecagagecgoctoctggtcacgtgattege
000129 cgataagtcacgggggocgoocgctcacctgaccagggbctcacgbggoccageccococctcogagagy
000133 ggagaccagcgggccatgacaagetecaggetttggttttegetgetgetggeggeoagegtteg
000257 caggacgggegacggeccetetggecetggectecagaacttocaaacetocegaccagegetacgt
000321 cectttaccogaacaactttecaattecagtacgatgtecageteggeegegeageceggetgetea
000385 gtectegacgaggecttecagegetategtgacetgetttteggttecgggtettggeccegte
000449 cttacectcacagggaaacggecatacactggagaagaatgtgttggttgtetetgtagteacace
000513 tggatgtaaccagecttectactttggagtcagtggagaattatacecectgaccataaatgatgac
000577 cagtgtttactecetetetgagactgtetggggageteteegaggtetggagacttttagecage
000641 ttgtttggaaatetgeoctgagggeacattetttatecaacaagactgagattgaggacttteoeeceg
000705 ctttocetcaceggggettgetgttggatacatetegecattacetgecactetetageatectg
000769 gacactetggatgtcatggecgtacaataaattgaacgtgttecactggeatetggtagatgate
000833 cttectteoccatatgagagettecactttteocagagetecatgagaaaggggtectacaaccetgt
000897 cacccacatectacacageacaggatgtgaaggaggtcattgaatacgeacggeteocggggtate
000961 cgtgtgettgeagagtttgacactectggecacactttgtectggggaccaggtatecctggat
001025 tactgactecttgetactetgggtetgagecetetggeoacetttggaccagtgaateccagtet
001089 caataatacctatgagttcatgagecacattettettagaagtecagetetgtetteoccagatttt
001153 tatectteatettggaggagatgaggttgattteacetgetggaagtecaacccagagatecagg
001217 actttatgaggaagaaaggcttecggtgaggacttecaageagetggagtecettetacatecagac
001281 getgotggacategteotettettatggeaagggetatgtggtgtggeaggaggtgtttgataat
001345 aaagtaaagattecagoccagacacaatcatacaggtgtggegagaggatatteccagtgaactata
001409 tgaaggagctggaactggtcaccaaggeceggetteegggecettetetetgecoccctggtacet
001473 gaaccgtatatcetatggecetgactggaaggatttetacatagtggaacccectggeatttgaa
001537 ggtacecectgagecagaaggetetggtgattggtggagaggettgtatgtggggagaatatgtgg
001601 acaacacaaacctggteecccaggetetggeccagagecaggggetgttgecgaaaggetgtggag
001665 caacaagttgacatctgacctgacatttgectatgaacgtttgtecacacttecegetgtgaattg
001729 ctgaggegaggtgtoccaggeccaaccoctecaatgtaggettetgtgageaggagtttgaacaga
0017393 cetgagocococcaggocaccgaggaggogtgotggoctgtaggtgaatggtagtggagecaggetteca
001857 ctgeatectggeocaggggacggageccettgeettegtgececttgectgegtgeceetgtget
0015921 tggagagaaaggggccggtgetggegetegeattecaataaagagtaatgtggeatttttetata
001985 ataaacatggattacctgtgtttaaaaaaaaaagtgtgaatggegttagggtaagggecacagee
002049 aggctggagtcagtgtetgececctgaggtettttaagttgagggetgggaatgaaacetatage
002113 ctttgtgetgttetgeoettgectgtgagetatgtcactoccectoccactoctgaccatatteca
002177 gacacctgococctaatccoctcagoctgotcacttcactictgeoattatatctccaaggegthtggta
002241 tatggaaaaagatgtaggggecttggaggtgttetggacagtggggagggetecagaceccaacet
002305 ggtcacagaagagcctetecoceccatgeoatacteatecacetecetecocctagagetattetect
002369 ttgggtttecttgetgeottcaattttatacaaccattatttaaatattattaaacacatattgtt
002433 cteta

Locate open reading frames (ORFs) in the mouse gene. Type:
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mouseORFs = seqshoworfs(mouseHEXA.Sequence)

seqshoworfs creates the structure mouseORFS.
mouseORFs =
1x3 struct array with fields:

Start
Stop

The mouse gene shows the longest ORF on the first reading frame.

Fratme 1

000001 getgotgyaagygyagetgyecggtgygecatgyoogyotgocagyoctotgggtttogotgotyge
000065 tggoggoggogttggcttgottggocacyggocactgtygygoccgtygygoccccagtacatoccaaaccta
000129 ccaccyggogotacaccoctgtaccocaacaacttocagttoocggtaccatygtocagttogygoogoyg
000193 cagygcgggctgcgtocgtoctogacgaggeoctttogacygoctaccgtaacctgctottoggttocyg
000257 gotottggocoocogacccagottotoaaataaacagoaaacgttgygygaagaacattotggtggt
000321 ctocgtogtcacagectgaatgtaatgaatttoctaatttggagtocggtagaaaattacacccta
000355 accattaatgatgaccagtgtttactogoctotgagactgtotggyggogotoctocgaggtotgy
000449 agactttcagtcagettgtttggaaatcagectgagggcacgtteotttatcaacaagacaaagat
000513 taaagactttoctogattocotcacocgygggogtactgoctggatacatotogocattacctygeoca
000577 ttgtctagcatcctyggatacactggatgtcatggcatacaataaattcaacgtgttcoccactgge
000641 acttgygtggacgactcttocttooccatatgagagottocactttoccagagotocaccagaaaggy
000705 gtocttcaaccctgtcactcacateoctacacagecacaggatgtgaaggaggtcattgaatacgca
000759 agygcttoggyggtatocogtgtygotygygcagaatttgacactoctyggocacactttygtoctggygygge
0005833 caggtgoccctgggttattaacaccttgotacteoctgggtotcatectoteoctgygcacatttggace
000897 gygtgaaccccagtotcaacagocacctatgacttocatgagoacactottocotggagatocagoteoa
000951 gtottocococggacttttatctocacctgggagygygatgaagtocgacttcacctgotggaagteca
001025 acoccaacatcocaggocttocatgaagaaaaagggotttactgacttocaagoagotggagtoott
0010589 ctacatccagacgotgoctggacatogtocteoctgattatgacaagyggctatgtggtgtggcaggag
001153 gtatttgataataaagtgaaggttoggoccagatacaatcatacaggtgtygygogygaagaaatyge
001217 cagtagagtacatgttggagatgcaagatatcaccagggotggottococgggeocctgoctgtoctyge
0012581 tococtggtacctgaaccgtgtaaagtatyggococtgactyggaaggacatgtacaaagtyggagooo
001345 ctggcgtttcatggtacgoctgaacagaaggotctggtcattggaggyggaggecctgtatgtyggg
001409 gagagtatgtggacagcaccaacctggtoocococagactoctggoocagagogggtygoocgtogotga
001473 gagactgtggagcagtaacctgacaactaatatagactttgeoctttaaacgtttgtocgeatttce
001537 cgttgtgagotgygtgaggagaggaatoccagyoccagoccatcagtygtagyctygotgtgagoagy
001601 agtttgagcagacttigagocaccagbigotgaacacecaggaggtigetgtectttgagicagoet
001665 gogotgagoaccoadyadyytyetyyeettaagagageadyteccyydyyeagygetaatecttos
001729 actgooctoccggocaggoyagageaccectigocegigtgocecctgtgactacagagaaggago

001793 ctoggtgotggoactyytyttoaataaagatctatgtgygocattttote
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Compare Amino Acid Sequences

The following procedure illustrates how to use global and local alignment functions
to compare two amino acid sequences. You could use alignment functions to look for
similarities between two nucleotide sequences, but alignment functions return more
biologically meaningful results when you are using amino acid sequences.

After you have located the open reading frames on your nucleotide sequences, you can
convert the protein coding sections of the nucleotide sequences to their corresponding
amino acid sequences, and then you can compare them for similarities.

1  Using the open reading frames identified previously, convert the human and mouse
DNA sequences to the amino acid sequences. Because both the human and mouse
HEXA genes were in the first reading frames (default), you do not need to indicate
which frame. Type

humanProtein
mouseProtein

nt2aa(humanHEXA .Sequence) ;
nt2aa(mouseHEXA.Sequence) ;

2 Draw a dot plot comparing the human and mouse amino acid sequences. Type
seqgdotplot(mouseProtein,humanProtein,4,3)

ylabel ("Mouse hexosaminidase A (alpha subunit)”)
xlabel ("Human hexosaminidase A (alpha subunit)”)

Dot plots are one of the easiest ways to look for similarity between sequences. The

diagonal line shown below indicates that there may be a good alignment between the
two sequences.
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Globally align the two amino acid sequences, using the Needleman-Wunsch
algorithm. Type

[GlobalScore, GlobalAlignment] = nwalign(humanProtein, ...

mouseProtein);
showal ignment(GlobalAlignment)

showal ignment displays the global alignment of the two sequences in the Help
browser. Notice that the calculated identity between the two sequences is 60%.
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Identities = 491/812 (60%), Positives = 575/812 (71%)
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The alignment is very good between amino acid position 69 and 599, after which the
two sequences appear to be unrelated. Notice that there is a stop (*) in the sequence
at this point. If you shorten the sequences to include only the amino acids that are in
the protein you might get a better alignment. Include the amino acid positions from
the first methionine (M) to the first stop (*) that occurs after the first methionine.

Trim the sequence from the first start amino acid (usually M) to the first stop (*) and
then try alignment again. Find the indices for the stops in the sequences.

humanStops = find(humanProtein == "*%)

humanStops

41 599 611 713 722 730

mouseStops = find(mouseProtein == "**")

mouseStops
539 557 574 606

Looking at the amino acid sequence for humanProtein, the first M is at position

70, and the first stop after that position is actually the second stop in the sequence
(position 599). Looking at the amino acid sequence for mouseProtein, the first M is
at position 11, and the first stop after that position is the first stop in the sequence
(position 557).

Truncate the sequences to include only amino acids in the protein and the stop.

humanProteinORF = humanProtein(70:humanStops(2))

humanProteinORF

MTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYVLYPNNFQFQYDV
SSAAQPGCSVLDEAFQRYRDLLFGSGSWPRPYLTGKRHTLEKNVLVVSVV
TPGCNQLPTLESVENYTLT INDDQCLLLSETVWGALRGLETFSQLVWKSA
EGTFFINKTEIEDFPRFPHRGLLLDTSRHYLPLSSILDTLDVMAYNKLNV
FHWHLVDDPSFPYESFTFPELMRKGSYNPVTHIYTAQDVKEVIEYARLRG
IRVLAEFDTPGHTLSWGPGIPGLLTPCYSGSEPSGTFGPVNPSLNNTYEF
MSTFFLEVSSVFPDFYLHLGGDEVDFTCWKSNPE IQDFMRKKGFGEDFKQ
LESFYIQTLLDIVSSYGKGYVVWQEVFDNKVKIQPDT I IQVWRED IPVNY
MKELELVTKAGFRALLSAPWYLNRI1SYGPDWKDFY IVEPLAFEGTPEQKA
LVIGGEACMWGEYVDNTNLVPRLWPRAGAVAERLWSNKLTSDLTFAYERL
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SHFRCELLRRGVQAQPLNVGFCEQEFEQT™

mouseProteinORF = mouseProtein(l1l:mouseStops(1l))

mouseProteinORF

MAGCRLWVSLLLAAALACLATALWPWPQY IQTYHRRYTLYPNNFQFRYHV
SSAAQAGCVVLDEAFRRYRNLLFGSGSWPRPSFSNKQQTLGKNILVVSVV
TAECNEFPNLESVENYTLT INDDQCLLASETVWGALRGLETFSQLVWKSA
EGTFFINKTKIKDFPRFPHRGVLLDTSRHYLPLSSILDTLDVMAYNKFNV
FHWHLVDDSSFPYESFTFPELTRKGSFNPVTHIYTAQDVKEVIEYARLRG
IRVLAEFDTPGHTLSWGPGAPGLLTPCYSGSHLSGTFGPVNPSLNSTYDF
MSTLFLEISSVFPDFYLHLGGDEVDFTCWKSNPN IQAFMKKKGFTDFKQL
ESFYIQTLLDIVSDYDKGYVVWQEVFDNKVKVRPDT I lQVWREEMPVEYM
LEMQD I TRAGFRALLSAPWYLNRVKYGPDWKDMYKVEPLAFHGTPEQKAL
VI1GGEACMWGEYVDSTNLVPRLWPRAGAVAERLWSSNLTTNIDFAFKRLS
HFRCELVRRGIQAQP ISVGCCEQEFEQT™>

Globally align the trimmed amino acid sequences. Type

[GlobalScore_trim, GlobalAlignment_trim] = nwalign(humanProteinORF, . ..

mouseProteinORF) ;
showal ignment(GlobalAlignment_trim)

showal ignment displays the results for the second global alignment. Notice that the
percent identity for the untrimmed sequences is 60% and 84% for trimmed sequences.
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Identities = 446/530 (84%), Positives = 502/530 (95%)
001 MISSRLWFSLLLAAAFAGRATALWPWPONFQTSDORYVLYPNNFQFOYDVSSAAQPGCSVLIER

Pes L0 reeeeer=e reeereeer = =rr=nerreerrt=r reeeer e reet
001 MAGCRLWVSLLLAAALACLATALWPWPQYIOTYHRRYTILYPNNFOFRYHVSSAAQAGCVVLDEL

065 FORYRDLLFGSGSWPRFYLTGKEHTLEENVLVVIVVIPGCHOLPTLESVENYTILTINDDQCLLL

Pabir=rrnenrnrerr === resneeeeer rr==r=tetnrrrerererrrnnl
065 FRRYENLLFGSGSWPRPSFSNEOOILGENILVVSVVIAECNEFPNLESVENYILTINDDOCLLA

129 ESETVWGALRGLETFSQLVWESAEGTIFFINEKIEIEDFPRFPHRGLLLDTSEHYLPLSSILDTLDV

(R R R N R R R R R R R R R RN RR R RRRRRRRRRRR RN
129 SEIVWGALRGLEIFSOLVWKSAEGIFFINKIKIKDFPRFPHRGVLLDISRHYLPLSSILDTLDV

183 HMAYMELNVFHWHLVDDESFPYESFIFPELMERGSYNEFVIHIYTAQDVEEVIEYARLEGIEVLAE

trrre=erneereeer reeerereeerr reer=rererer e
183 MAYNEFNVEEWHLVDDSSFPYESFIFPELTREGSEFNPVIHIYTAQDVEEVIEYARLRGIREVLAE

257 FDIPGHILSWGPGIPGLLIPCYSGEEPSGIFGPVHPSLNNIYEFMSTFFLEVSSVEFPDEYLELG

trerererererr reererererrs teerre e e s s s et
257 FDIPGHILSWGPGAPGLLIPCYSGSHLSGTFGPVNPSLNSTYDFMSTLFLEISSVFPDFYLHLG

321 GDEVDFICWESHNPEIQDFMEEEGFGEDFEQLESFYIOQTLLDIVSSYGEGYVVWOEVEFDNEVEIC

trrrerereeree=er re=eeer  rrerrrererrrerrrers e rerrrerernrrret e
321 GDEVDFICWESHENIQAFMEEEGF-TDFEQLESFYIQTLLDIVSDYDEGYVVNQEVEDNEVEVE

385 PDIIIOVWREDIPVHNYMEELELVIEAGFRALLSAPWYLNRISYGPDWEDFYIVEPLAFEGIPEQ

PErrererer==er=0n s st bnrnenreeereent==erneerr=r reerr=rnntl
384 PDTIIQVWREEMPVEYMLEMODITRAGFRALLSAPWYLNEVEYGPDWEDMYKVEPLAFHGIFEQ

445 EKALVIGGEACHWGEYVDNINLVPRELWPRAGAVAERLWSHNELTSDLTFAYERLSHFRCELLERGV

frrrererrrrreerreseeerrrererrrrrerer stz tr==eetnnre=etn:
448 FALVIGGEACHMWGEYVDSTNLVPRLWPRAGAVAERLWSSNLTINIDFAFFRLSHFRCELVERGI

513 QAQPLNVGFCEQEFEQT*

PEEr==nr reeerennd
512 QAQPISVGCCEQEFEQT*

Another way to truncate an amino acid sequence to only those amino acids in
the protein is to first truncate the nucleotide sequence with indices from the
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seqshoworfs function. Remember that the ORF for the human HEXA gene and the
ORF for the mouse HEXA were both on the first reading frame.

humanORFs = seqgshoworfs(humanHEXA.Sequence)

humanORFs
1x3 struct array with fields:

Start
Stop

mouseORFs = seqshoworfs(mouseHEXA.Sequence)

mouseORFs

1x3 struct array with fields:
Start
Stop

humanPORF nt2aa(humanHEXA.Sequence (humanORFs(1) -Start(1): ...

humanORFs (1) .Stop(1)));

mousePORF = nt2aa(mouseHEXA.Sequence(mouseORFs(1).Start(1):...
mouseORFs (1) -Stop(1)));

[GlobalScore2, GlobalAlignment2] = nwalign(humanPORF, mousePORF);

Show the alignment in the Help browser.

showal ignment(GlobalAlignment2)

The result from first truncating a nucleotide sequence before converting it to an
amino acid sequence is the same as the result from truncating the amino acid
sequence after conversion. See the result in step 6.

An alternative method to working with subsequences is to use a local alignment
function with the nontruncated sequences.

Locally align the two amino acid sequences using a Smith-Waterman algorithm.
Type

[LocalScore, LocalAlignment] = swalign(humanProtein, ...
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mouseProtein)

LocalScore =
1057

LocalAlignment =
RGDQR-AMTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYV . . .

I H== e reeeeee=0 ey = == - - -
RGAGRWAMAGCRLWVSLLLAAALACLATALWPWPQY IQTYHRRYT . . .

9 Show the alignment in color.

showal ignment(LocalAlignment)
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Identities = 454/547 (83%), Positives = 514/547 (94%)
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RGAGRWAMAGCRLWVILLLARAL ACLATALWEFWP QY IOTYHRERYTLYPHNF QF RYHV S S A RO

CAVLDEAFQRYRDLLFGEGIWPRP YL TGERHTLEENV LV SV TPGCNOLPTLESVENYTLTIN

R R R RN R R R R A R RN
CVWLDEAFRRYRMLLFGEGSWPRFSF SNROOTLGEN ILVVSVVTAECHEF PHLESVEN Y TLTIN

DD LLLSETWWGALRGLETF 3QLVWESAEGTFF INKTEIEDFPRFPHRGLLLD TS RHYLPLIS

Ferrrr reerrrrrrerrrrrrrerrrererrrrrr et re et e rrrr e
DD LLARETVIGALRGLETF 3oLV ITES AEGTFF INETEIFDFPRFPHRGVLLD TZREYLPLES

ILDTLDWVHATHNELNVFHTHLVDDPSFPTESF TFPELMREEGETNPVTHIYTAODVEEVIETARLE

Frrrerrrerrrserrerreerr crreerrr e et rrrrs e e e e e e e
ILDTLDVHATHNEFNVFHTHLVD DS SFPYESFTFPEL TREGSFHNPVTHI Y TAQDVEEVIETARLE

GIRVLAEFDTPGHTLEWGPGIPGLLTRCYSGSEPSGTE GPVHNEPS LM TYEFHATFFLEVISVEF

Frrrrrrreerrrrrreerr rererrrrr et rrrreerrrrrrsrrs s s e
GIRVLAEFDTPGHTLEWGPGAPGLLTRPC YR GSHLIGTF GPVYNPSLHSTYDFHRTLFLEISSVER

DFYLHLGGDEVDF TCWESNPE IQODFMREKGFGEDFEQLESFTIQTLLD IVISYGEGTWVITQEVE

Frrrerrrerrrerrrerrtser er=rerr  rrrrrrr e e e e et et ety
DF YLHLGGDEVDF TCWESNPNIQAFNEERGF - TDFEQLESFYIQTLLD IVSD YDESTVVITQEVE

DHEVEICQPD TIIOWWRED TPV YHKELELY TEAGFRALLI AP WY LR IS TGP DWEDFTWVVEFLL

FEEEr==teerrrrrrre=rr=rr = sfarrrrrteerrrrrrrs=rrrrrrr=r 1t
DNEVEVREPDTIICVIWREEMPYEYHLEMOD ITREAGFRALLI AP WY LNEVEYGPDWEDMYEVEPL L

FEGTPEQKALVIGGEACHMNGE TV DN TNLYVFRLWPRAGAVAERLWENELTIDLTF AYTERLIHFRC

Fertrrrrerrr e et e e e e et e e e e e e s tbess presb i irnnd
FHGTFEQKALV IGGEACHWGEYVDETHLVPRELWFRAGAVAERLWSSNLTTNIDF AFKRELSHFRC

ELLERGVOALOPLINVGFCEQEFEQT*APGTEEGLGT
FE=rrr=teer==trr trrrrrrrrr == =1
ELVERGIQAQP ISVGCCEQEFEQT*ATSAEHPGGC
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View and Align Multiple Sequences

3-58

In this section...

“Overview of the Sequence Alignment and Phylogenetic Tree Apps” on page 3-58
“Load Sequence Data and Viewing the Phylogenetic Tree” on page 3-58

“Select a Subset of Data from the Phylogenetic Tree” on page 3-59

“Align Multiple Sequences” on page 3-61

“Adjust Multiple Sequence Alignments Manually” on page 3-62

“Close the Sequence Alignment App” on page 3-65

Overview of the Sequence Alignment and Phylogenetic Tree Apps

The Sequence Alignment app integrates many sequence and multiple alignment
functions in the toolbox. Instead of entering commands in the MATLAB Command
Window, you can use this app to visually inspect a multiple alignment and make manual
adjustments.

The Phylogenetic Tree app allows you to view, edit, and explore phylogenetic tree data.
It also allows branch pruning, reordering, renaming, and distance exploring. It can also
open or save Newick or ClustalW tree formatted files.

Load Sequence Data and Viewing the Phylogenetic Tree

Load unaligned sequence data into the MATLAB environment, and create a phylogenetic
tree.

1 Load sequence data.

load primates.mat

2 Create a phylogenetic tree.

tree = seglinkage(seqpdist(primates), "single”, primates);

3 View the phylogenetic tree.

phytreeviewer(tree)
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Phylogenetic Tree 1 =HNCN X

File Tools Window Help "
RO G EDE A

———————— - German_Meanderthal

L 0 JRussian_keanderthal

L—— & 4European_Human

HChimp_Troglodytes

HChimp_Schweinfurthii

qChimp_Werus

HChimp_Vellerosus

Puti_tCrangutan

-Jari_Qrangutan

qtauntain_Gorilla_Rwanda
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uiimum

Select a Subset of Data from the Phylogenetic Tree

Select the human and chimp branches.

1  From the toolbar, click the Prune icon.
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Phylogenetic Tree 1

File Tools Window Help
W& W @cé@kﬁ

| Prune (delete) Leaf/Branch Mu:u:le|

2 Click the branches to prune (remove) from the tree. For this example, click the
branch nodes for gorillas, orangutans, and Neanderthals.

Phylogenetic Tree 1 =RNE X

File Teools Window Help L

+\- _\"iﬂ-? 4?{{5@?‘:

L\\s HEuropean_Human
——0 HChimp_Troglodytes
L—=n HChimp_Schweinfurthii
? L n HChimp_Werus
o HChimp_*ellerosus

3 Export the selected branches to a second tree. Select File > Export to Workspace,
and then select Only Displayed.

4 In the Export to dialog box, enter the name of a variable. For example, enter tree2,
and then click OK.
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{u Export t...lE 2

Workspace variable name 7

tree2

[ox_| [cancel]

LS =

5 Extract sequences from the tree object.

primates2 = primates(segmatch(get(tree2, "Leafnames”),{primates.Header}));

Align Multiple Sequences

After selecting a set of related sequences, you can align them and view the results.
1  Align multiple sequences.

ma = multialign(primates2?);

2 View the aligned sequences in the Sequence Alignment app.
segalignviewer(ma);

The aligned sequences appear as shown below.
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i '
4 Biclegical Sequence Alignment - ma l = | = 23

File Edit Display Window Help |ax

A | @EEZZ|O HmDAE 0

CONSENSUS CamccocTaTeTaTlTCETACATTIACTOC
i8] k| 1]

European_Human
Chimp_Troglodytes
Chimp_Schweinfurthii

Chimp_¥erus

r » I I I
 » I I I

Chimp_¥ellerosus

< ] (] b

1 41

[ T T T —

5 sequences | European Human [Sea 1 Aln 1

Adjust Multiple Sequence Alignments Manually
Algorithms for aligning multiple sequences do not always produce an optimal result.

By visually inspecting the alignment, you can identify areas that could use a manual
adjustment to improve the alignment.

1 Identify an area where you could improve the alignment.
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p
4 Biclegical Sequence Alignment - ma

File Edit Display Window Help

TR S 2 ==

| a x

RS

FDEF0

CONSENSUS

T A C&GT CM
I

European_Human
Chimp_Troglodytes
Chimp_Schweinfurthii

Chimp_¥erus

Chimp_¥ellerosus

4 Fo[A

P

AATCCATCCTCGCCCCCACGGA
| |
340

[amg] 3

1

5 sequences

""'!Ilﬂhllll\lllll|If||||IIIHIHI|I'III|IIIIIII'III|IlllIIIhIIIII\II\IINIIIIII[ﬂ]IIII...-......_.

319 347

| European Human [Sea 1 Aln 1

L

Click a letter to select it, and then move the cursor over the red direction bar. The

cursor changes to a hand.

European_Human
Chimp_Traglodytes
Chimp_Schweinfurthii
Chimp_¥erus

Chimp_¥ellerosus

1 3

Click and drag the sequence to the right to insert a gap. If there is a gap to the left,
you can also move the sequence to the left and eliminate the gap.
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SI:ZEI | S%D
European_Human T A LC A TCAAATTLCLELCTTI
Chimp_Traglodytes T A C A TCAAATLCTLCATTELCI
Chimp_Schweinfurthii T A LC A TCAAATTLCIECATTEC.I
Chimp_¥erus T AL A TCAAAMALCTIETTTECI
Chimp_¥ellerosus T ALCA T C A AA -ﬁl: C AT

Alternately, to insert a gap, select a character, and then click the Insert Gap icon on
the toolbar or press the spacebar.

4\ Biclogical Sequence Alignment - ma

File Edit Display Window Help

A Ar A T%JE _é‘ﬂ (7]

Insert Gap(s) (Space)

CONSENSUS T & CAGT C A A AT CCATCCE

3£EI Séﬂ

| | | |
European_Human T AL A TCAAATTLCLCLCTTCIL
Chimp_Troglodytes T A C A TCAAATILCILCATTELCTI
Chimp_Schweinfurthii T A C A TCAAATCLCILCATTECLIL
Chimp_¥erus T ALC A TCAAALCTILCTTTECIL
Chimp_¥ellerosus T A LC A TCAA ﬂﬂc CATLCTIC
4 (S |

i -

Note: You cannot delete or add letters to a sequence, but you can add or delete gaps.
If all of the sequences at one alignment position have gaps, you can delete that
column of gaps.

4 Continue adding gaps and moving sequences to improve the alignment.
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CONSENSUS T A CAGT CA &AM - T CAT S0

Sél:l SéD

| | | |
European_Human T ALC A TCAAA- TCLCLCTTCL
Chimp_Troglodytes T ALC A TCAAA-TLCLCATTEL
Chimp_Schweinfurthii T A C A TCAAA-TLCCLCATTELL
Chimp_Yerus T A LC A TCAAALCTTE - TTTECCLC
Chimp_¥ellerosus T A LC A TCAAA-TLCCLCATTELL
+ F o

Close the Sequence Alignment App

Close the Sequence Alignment app from the MATLAB command line using the
following syntax:

seqalignviewer(“close™)
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+ “Managing Gene Expression Data in Objects” on page 4-2

+ “Representing Expression Data Values in DataMatrix Objects” on page 4-5

+ “Representing Expression Data Values in ExptData Objects” on page 4-11

+ “Representing Sample and Feature Metadata in MetaData Objects” on page 4-15

* “Representing Experiment Information in a MIAME Object” on page 4-21

+ “Representing All Data in an ExpressionSet Object” on page 4-25

* “Visualizing Microarray Images” on page 4-30

* “Analyzing Gene Expression Profiles” on page 4-53

+ “Detecting DNA Copy Number Alteration in Array-Based CGH Data” on page 4-68

+ “Exploring Microarray Gene Expression Data” on page 4-89
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Managing Gene Expression Data in Objects

Microarray gene expression experiments are complex, containing data and information
from various sources. The data and information from such an experiment is typically
subdivided into four categories:

Measured expression data values
Sample metadata
Microarray feature metadata

Descriptions of experiment methods and conditions

In MATLAB, you can represent all the previous data and information in an
ExpressionSet object, which typically contains the following objects:

One ExptData object containing expression values from a microarray experiment in
one or more DataMatrix objects

One MetaData object containing sample metadata in two dataset (Statistics and
Machine Learning Toolbox) arrays

One MetaData object containing feature metadata in two dataset arrays

One MIAME object containing experiment descriptions

The following graphic illustrates a typical ExpressionSet object and its component
objects.
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ExpressionSset object

DataMatrix object DataMatrix object

Each element (DataMatrix object) in the ExpressionSet object has an element name.
Also, there is always one DataMatrix object whose element name is Expressions.
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An ExpressionSet object lets you store, manage, and subset the data from a microarray
gene expression experiment. An ExpressionSet object includes properties and methods
that let you access, retrieve, and change data, metadata, and other information about the
microarray experiment. These properties and methods are useful to view and analyze the
data. For a list of the properties and methods, see ExpressionSet class.

To learn more about constructing and using objects for microarray gene expression data
and information, see:

+ “Representing Expression Data Values in DataMatrix Objects” on page 4-5

+ “Representing Expression Data Values in ExptData Objects” on page 4-11

* “Representing Sample and Feature Metadata in MetaData Objects” on page 4-15

+ “Representing Experiment Information in a MIAME Object” on page 4-21

+ “Representing All Data in an ExpressionSet Object” on page 4-25
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Representing Expression Data Values in DataMatrix Objects

In this section...

“Overview of DataMatrix Objects” on page 4-5
“Constructing DataMatrix Objects” on page 4-6
“Getting and Setting Properties of a DataMatrix Object” on page 4-6

“Accessing Data in DataMatrix Objects” on page 4-7

Overview of DataMatrix Objects

The toolbox includes functions, objects, and methods for creating, storing, and accessing
microarray data.

The object constructor function, DataMatriXx, lets you create a DataMatrix object to
encapsulate data and metadata (row and column names) from a microarray experiment.
A DataMatrix object stores experimental data in a matrix, with rows typically
corresponding to gene names or probe identifiers, and columns typically corresponding to
sample identifiers. A DataMatrix object also stores metadata, including the gene names
or probe identifiers (as the row names) and sample identifiers (as the column names).

You can reference microarray expression values in a DataMatrix object the same way
you reference data in a MATLAB array, that is, by using linear or logical indexing.
Alternately, you can reference this experimental data by gene (probe) identifiers and
sample identifiers. Indexing by these identifiers lets you quickly and conveniently access
subsets of the data without having to maintain additional index arrays.

Many MATLAB operators and arithmetic functions are available to DataMatrix objects
by means of methods. These methods let you modify, combine, compare, analyze, plot,
and access information from DataMatrix objects. Additionally, you can easily extend the
functionality by using general element-wise functions, dmarrayfun and dmbsxfun, and
by manually accessing the properties of a DataMatrix object.

Note: For tables describing the properties and methods of a DataMatrix object, see the
DataMatrix object reference page.
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Constructing DataMatrix Obijects

1

Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains
yeast data. This MAT-file includes three variables: yeastvalues, a 614-by-7 matrix
of gene expression data, genes, a cell array of 614 GenBank accession numbers for
labeling the rows in yeastvalues, and times, a 1-by-7 vector of time values for
labeling the columns in yeastvalues.

load filteredyeastdata

Create variables to contain a subset of the data, specifically the first five rows and
first four columns of the yeastvalues matrix, the genes cell array, and the times
vector.

yeastvalues = yeastvalues(1:5,1:4);
genes = genes(1:5,:);
times = times(1:4);

Import the microarray object package so that the DataMatriXx constructor function
will be available.

import bioma.data.*

Use the DataMatrix constructor function to create a small DataMatrix object from

the gene expression data in the variables you created in step 2.

dmo = DataMatrix(yeastvalues,genes,times)

dmo =
0 9.5 11.5 13.5
SS DNA -0.131 1.699 -0.026 0.365
YALOO3W 0.305 0.146 -0.129 -0.444
YALO12W 0.157 0.175 0.467 -0.379
YALO26C 0.246 0.796 0.384 0.981
YALO34C -0.235 0.487 -0.184 -0.669

Getting and Setting Properties of a DataMatrix Object

You use the get and set methods to retrieve and set properties of a DataMatrix object.

1

Use the get method to display the properties of the DataMatrix object, dmo.
get(dmo)

Name:
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RowNames:
ColNames:
NRows:

NCols:

NDims:
ElementClass:

{5x1 cell}
{ 0" " 9.5"
5

4
2
"double*

"11.5" *"13.5%}

2 Use the set method to specify a name for the DataMatrix object, dmo.

dmo = set(dmo, "Name*, "MyDMObject");

3 Use the get method again to display the properties of the DataMatrix object, dmo.

get(dmo)

Name:
RowNames:
ColNames:

NRows:
NCols:
NDims:
ElementClass:

"MyDMObject*

{5x1 cell}

{ 0" " 9.57 "11.5" "13.5"}
5

4

2

"double*

Note: For a description of all properties of a DataMatrix object, see the DataMatrix object

reference page.

Accessing Data in DataMatrix Objects

DataMatrix objects support the following types of indexing to extract, assign, and delete

data:

* Parenthesis () indexing

* Dot . indexing

Parentheses () Indexing

Use parenthesis indexing to extract a subset of the data in dmo and assign it to a new

DataMatrix object dmo2:

dmo2 = dmo(1:5,2:3)
dmo2 =
9.5
SS DNA 1.699

11.5
-0.026
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YALOO3W
YALO12W
YALO26C
YALO34C

0.146
0.175
0.796
0.487

-0.129
0.467
0.384

-0.184

Use parenthesis indexing to extract a subset of the data using row names and column
names, and assign it to a new DataMatrix object dmo3:

dmo3 = dmo({"SS DNA","YALO12W","YALO34C"},"11.5")

dmo3 =

SS DNA
YALO12W
YALO34C

11.5

-0.026
0.467
-0.184

Note: If you use a cell array of row names or column names to index into a DataMatrix
object, the names must be unique, even though the row names or column names within
the DataMatrix object are not unique.

Use parenthesis indexing to assign new data to a subset of the elements in dmo2:

dmo2({"SS DNA",

dmo2 =

SS DNA
YALOO3W
YALO12W
YALO26C
YALO34C

"YALOO3W*}, 1:2) = [1.700 -0.030; 0.150 -0.130]

9.5
1.7
0.15
0.175
0.796
0.487

11.5
-0.03
-0.13
0.467
0.384

-0.184

Use parenthesis indexing to delete a subset of the data in dmo2:

dmo2({"SS DNA",

dmo2 =

YALO12W
YALO26C
YALO34C

"YALOO3W"}, ) = [1

9.5
0.175
0.796
0.487

11.5
0.467
0.384

-0.184
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Dot . Indexing

Note: In the following examples, notice that when using dot indexing with DataMatrix
objects, you specify all rows or all columns using a colon within single quotation marks,

C:0.

Use dot indexing to extract the data from the 11.5 column only of dmo:

timeValues
timeValues

dmo.(":")("11.5%)

-0.0260
-0.1290
0.4670
0.3840
-0.1840

Use dot indexing to assign new data to a subset of the elements in dmo:

dmo.(1:2)(":") =7

dmo =
0 9.5 11.5 13.5
SS DNA 7 7 7 7
YALOO3W 7 7 7 7
YALO12W 0.157 0.175 0.467 -0.379
YALO26C 0.246 0.796 0.384 0.981
YALO34C -0.235 0.487 -0.184 -0.669

Use dot indexing to delete an entire variable from dmo:

dmo.YALO34C = []

dmo =
0 9.5 11.5 13.5
SS DNA 7 7 7 7
YALOO3W 7 7 7 7
YALO12W 0.157 0.175 0.467 -0.379
YALO26C 0.246 0.796 0.384 0.981

Use dot indexing to delete two columns from dmo:

dmo.(":")(2:3)=[]
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dmo

SS DNA
YALOO3W
YALO12W
YALO26C

0.157
0.246

13.5

-0.379
0.981
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Representing Expression Data Values in ExptData Obijects

In this section...

“Overview of ExptData Objects” on page 4-11
“Constructing ExptData Objects” on page 4-11

“Using Properties of an ExptData Object” on page 4-12
“Using Methods of an ExptData Object” on page 4-13

“References” on page 4-14

Overview of ExptData Obijects

You can use an ExptData object to store expression values from a microarray experiment.
An ExprData object stores the data values in one or more DataMatrix objects, each
having the same row names (feature names) and column names (sample names). Each
element (DataMatrix object) in the ExptData object has an element name.

The following illustrates a small DataMatrix object containing expression values from
three samples (columns) and seven features (rows):

A B C
100001_at 2.26 20.14 31.66
100002_at 158.86 236.25 206.27
100003_at 68.11 105.45 82.92
100004_at 74.32 96.68 84.87
100005_at 75.05 53.17 57.94
100006_at 80.36 42.89 77.21

100007_at 216.64 191.32 219.48

An ExptData object lets you store, manage, and subset the data values from a microarray
experiment. An ExptData object includes properties and methods that let you access,
retrieve, and change data values from a microarray experiment. These properties

and methods are useful to view and analyze the data. For a list of the properties and
methods, see ExptData class.

Constructing ExptData Objects

The mouseExprsData. txt file used in this example contains data from Hovatta et al.,
2005.

4-11
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1 Import the bioma.data package so that the DataMatrix and ExptData
constructor functions are available.

import bioma.data.*

2 Use the DataMatrix constructor function to create a DataMatrix object from the
gene expression data in the mouseExprsData. txt file. This file contains a table
of expression values and metadata (sample and feature names) from a microarray
experiment done using the Affymetrix MGU74Av2 GeneChip array. There are 26
sample names (A through Z), and 500 feature names (probe set names).

dmObj = DataMatrix("File", "mouseExprsData.txt");

3 Use the ExptData constructor function to create an ExptData object from the
DataMatrix object.
EDObj = ExptData(dmObj);

4 Display information about the ExptData object, EDObj.

EDODbj

Experiment Data:
500 features, 26 samples
1 elements
Element names: Elmtl

Note: For complete information on constructing ExptData objects, see ExptData class.

Using Properties of an ExptData Object
To access properties of an ExptData object, use the following syntax:
objectname .propertyname

For example, to determine the number of elements (DataMatrix objects) in an ExptData
object:

EDObj -NElements

ans =
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To set properties of an ExptData object, use the following syntax:
objectname._propertyname = propertyvalue
For example, to set the Name property of an ExptData object:

EDObj .Name = *MyExptDataObject®

Note: Property names are case sensitive. For a list and description of all properties of an
ExptData object, see ExptData class.

Using Methods of an ExptData Object

To use methods of an ExptData object, use either of the following syntaxes:

objectname .methodname

or

methodname (objectname)

For example, to retrieve the sample names from an ExptData object:
EDObj .sampleNames
Columns 1 through 9

- 5" cr D* e - e e -
To return the size of an ExptData object:
size(EDObj)
ans =

500 26

Note: For a complete list of methods of an ExptData object, see ExptData class.

4-13
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Representing Sample and Feature Metadata in MetaData Obijects

In this section...

“Overview of MetaData Objects” on page 4-15
“Constructing MetaData Objects” on page 4-16
“Using Properties of a MetaData Object” on page 4-19
“Using Methods of a MetaData Object” on page 4-19

Overview of MetaData Objects

You can store either sample or feature metadata from a microarray gene expression
experiment in a MetaData object. The metadata consists of variable names, for example,
related to either samples or microarray features, along with descriptions and values for
the variables.

A MetaData object stores the metadata in two dataset (Statistics and Machine Learning
Toolbox) arrays:

+ Values dataset array — A dataset array containing the measured value of each
variable per sample or feature. In this dataset array, the columns correspond to
variables and rows correspond to either samples or features. The number and names
of the columns in this dataset array must match the number and names of the rows
in the Descriptions dataset array. If this dataset array contains sample metadata,
then the number and names of the rows (samples) must match the number and names
of the columns in the DataMatrix objects in the same ExpressionSet object. If this
dataset array contains feature metadata, then the number and names of the rows
(features) must match the number and names of the rows in the DataMatrix objects
in the same ExpressionSet object.

* Descriptions dataset array — A dataset array containing a list of the variable
names and their descriptions. In this dataset array, each row corresponds
to a variable. The row names are the variable names, and a column, named
VariableDescription, contains a description of the variable. The number and
names of the rows in the Descriptions dataset array must match the number and
names of the columns in the Values dataset array.

The following illustrates a dataset array containing the measured value of each variable
per sample or feature:

4-15
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Gender Age Type Strain Source
A "Male* 8 "Wild type* "129S6/SvEvTac* "amygdala®
B "Male* 8 "Wild type* "129S6/SvEvTac* "amygdala®
C "Male* 8 "Wild type* "129S6/SvEvTac* "amygdala®
D "Male* 8 "Wild type* "A/J " "amygdala®
E "Male* 8 "Wild type* "A/J " "amygdala®
F "Male* 8 "Wild type* "C57BL/6J " "amygdala®

The following illustrates a dataset array containing a list of the variable names and their
descriptions:

VariableDescription
id "Sample 1identifier”
Gender "Gender of the mouse in study”
Age "The number of weeks since mouse birth*
Type "Genetic characters”
Strain "The mouse strain”
Source "The tissue source for RNA collection”

A MetaData object lets you store, manage, and subset the metadata from a microarray
experiment. A MetaData object includes properties and methods that let you access,
retrieve, and change metadata from a microarray experiment. These properties and
methods are useful to view and analyze the metadata. For a list of the properties and
methods, see MetaData class

Constructing MetaData Objects

Constructing a MetaData Object from Two dataset Arrays

1 Import the bioma.data package so that the MetaData constructor function is
available.

import bioma.data.*

2 Load some sample data, which includes Fisher’s iris data of 5 measurements on a
sample of 150 irises.

load fisheriris

3 Create a dataset array from some of Fisher's iris data. The dataset array will contain

750 measured values, one for each of 150 samples (iris replicates) at five variables
(species, SL, SW, PL, PW). In this dataset array, the rows correspond to samples,
and the columns correspond to variables.
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irisValues = dataset({nominal (species), "species"}, ...

{meas, "SL", "SW", "PL", "PW"});
Create another dataset array containing a list of the variable names and their
descriptions. This dataset array will contain five rows, each corresponding to the five
variables: species, SL, SW, PL, and PW. The first column will contain the variable
name. The second column will have a column header of VariableDescription and
contain a description of the variable.

% Create 5-by-1 cell array of description text for the variables
varDesc = {"Iris species”, "Sepal Length®", "Sepal Width",
"Petal Length®, "Petal Width"}";
% Create the dataset array from the variable descriptions
irisvVarDesc = dataset(varDesc,
"ObsNames®, {"species”,"SL","SW","PL","PW"},
"VarNames®", {"VariableDescription®})

irisVarDesc =
VariableDescription
species "Iris species”
SL "Sepal Length®
SW "Sepal Width*®
PL "Petal Length®
PW "Petal Width*

Create a MetaData object from the two dataset arrays.

MDObj1l = MetaData(irisValues, irisVarDesc);

Constructing a MetaData Object from a Text File

1

Import the bioma.datapackage so that the MetaData constructor function is
available.

import bioma.data.*

View the mouseSampleData. txt file included with the Bioinformatics Toolbox
software.

Note that this text file contains two tables. One table contains 130 measured values,
one for each of 26 samples (A through Z) at five variables (Gender, Age, Type,
Strain, and Source). In this table, the rows correspond to samples, and the columns
correspond to variables. The second table has lines prefaced by the # symbol. It
contains five rows, each corresponding to the five variables: Gender, Age, Type,
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Strain, and Source. The first column contains the variable name. The second column
has a column header of VariableDescription and contains a description of the
variable.

id: Sample identifier

Gender: Gender of the mouse in study

Age: The number of weeks since mouse birth
Type: Genetic characters

Strain: The mouse strain

Source: The tissue source for RNA collection
D Gender Age Type Strain Source

Male 8 Wild type 129S6/SvEvTac amygdala
Male 8 Wild type 129S6/SvEvTac amygdala
Male 8 Wild type 129S6/SvEvTac amygdala
Male 8 Wild type A/J amygdala

Male 8 Wild type A/J amygdala

Male 8 Wild type C57BL/6J amygdala

Male 8 Wild type C57BL/6J amygdala

Male 8 Wild type 129S6/SvEvTac cingulate cortex
Male 8 Wild type 129S6/SvEvTac cingulate cortex
Male 8 Wild type A/J cingulate cortex

Male 8 Wild type A/J cingulate cortex

Male 8 Wild type A/J cingulate cortex

Male 8 Wild type C57BL/6J cingulate cortex
Male 8 Wild type C57BL/6J cingulate cortex
Male 8 Wild type 129S6/SvEvTac hippocampus
Male 8 Wild type 129S6/SvEvTac hippocampus
Male 8 Wild type A/J hippocampus

Male 8 Wild type A/J hippocampus

Male 8 Wild type C57BL/6J hippocampus

Male 8 Wild type C57BL/6J4 hippocampus

Male 8 Wild type 129S6/SvEvTac hypothalamus
Male 8 Wild type 129S6/SvEvTac hypothalamus
Male 8 Wild type A/J hypothalamus

Male 8 Wild type A/J hypothalamus

Male 8 Wild type C57BL/6J hypothalamus

Male 8 Wild type C57BL/6J hypothalamus

N<X<X=<CHOVWIT O UOZ=EZrXGW=TITOTMOO>=H%HFHFHHtH

00 00 00 00 0O CO CO 0O 00 00 00 OO0 CO CO CO 0O 0O 00 00 00 C0 O CO QO

3 Create a MetaData object from the metadata in the mouseSamp leData. txt file.
MDObj2 = MetaData("File", "mouseSampleData.txt", "VarDescChar®, "#%)
Sample Names:

A, B, ...,Z (26 total)
Variable Names and Meta Information:
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VariableDescription

Gender " Gender of the mouse in study”

Age " The number of weeks since mouse birth*
Type " Genetic characters”

Strain " The mouse strain”

Source " The tissue source for RNA collection”

For complete information on constructing MetaData objects, see MetaData class.

Using Properties of a MetaData Object
To access properties of a MetaData object, use the following syntax:
objectname _propertyname
For example, to determine the number of variables in a MetaData object:
MDObj2.NVariables
ans =

5
To set properties of a MetaData object, use the following syntax:
objectname._.propertyname = propertyvalue

For example, to set the Description property of a MetaData object:

MDObj1l.Description = "This is my MetaData object for my sample metadata“

Note: Property names are case sensitive. For a list and description of all properties of a
MetaData object, see MetaData class.

Using Methods of a MetaData Object

To use methods of a MetaData object, use either of the following syntaxes:

objectname .methodname

or

methodname (objectname)
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For example, to access the dataset array in a MetaData object that contains the variable

values:

MDObj2.variableValues;

To access the dataset array of a MetaData object that contains the variable descriptions:

variableDesc(MDObj?2)
ans =
VariableDescription
Gender " Gender of the mouse in study”
Age " The number of weeks since mouse birth”
Type " Genetic characters”
Strain " The mouse strain”
Source " The tissue source for RNA collection®

Note: For a complete list of methods of a MetaData object, see MetaData class.
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Representing Experiment Information in a MIAME Obiject

In this section...

“Overview of MIAME Objects” on page 4-21
“Constructing MIAME Objects” on page 4-21
“Using Properties of a MIAME Object” on page 4-23
“Using Methods of a MIAME Object” on page 4-24

Overview of MIAME Objects

You can store information about experimental methods and conditions from a microarray
gene expression experiment in a MIAME object. It loosely follows the Minimum
Information About a Microarray Experiment (MIAME) specification. It can include
information about:

+  Experiment design

*  Microarrays used

*  Samples used

* Sample preparation and labeling

*  Hybridization procedures and parameters

*  Normalization controls

*  Preprocessing information

+ Data processing specifications

A MIAME object includes properties and methods that let you access, retrieve, and
change experiment information related to a microarray experiment. These properties and
methods are useful to view and analyze the information. For a list of the properties and
methods, see MIAME class.

Constructing MIAME Obijects

For complete information on constructing MIAME objects, see MIAME class.
Constructing a MIAME Object from a GEO Structure

1 Import the bioma.data package so that the MIAME constructor function is available.
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import bioma.data.*

Use the getgeodata function to return a MATLAB structure containing Gene
Expression Omnibus (GEO) Series data related to accession number GSE4616.

geoStruct = getgeodata("GSE46167)

geoStruct

Header: [1x1 struct]
Data: [12488x12 bioma.data.DataMatrix]

Use the MIAME constructor function to create a MIAME object from the structure.

MIAMEObj1 = MIAME(geoStruct);

Display information about the MIAME object, MIAMEObJ.
MIAMEObj 1

MIAMEObj1 =

Experiment Description:
Author name: Mika,,Silvennoinen
Riikka, ,KivelAa
Maarit, ,Lehti
Anna-Maria, ,Touvras
Jyrki, ,Komulainen
Veikko, ,Vihko
Heikki, ,Kainulainen
Laboratory: LIKES - Research Center
Contact information: Mika,,Silvennoinen
URL:
PubMedIDs: 17003243
Abstract: A 90 word abstract is available. Use the Abstract property.
Experiment Design: A 234 word summary is available. Use the ExptDesign property.
Other notes:
[1x80 char]

Constructing a MIAME Object from Properties

1

Import the bioma.data package so that theMI AME constructor function is available.

import bioma.data.*

Use the MIAME constructor function to create a MIAME object using individual
properties.
MIAMEObj2 = MIAME("investigator®, "Jane Researcher”,...

“lab®, "One Bioinformatics Laboratory”,...
“contact”, "jresearcher@lab.not.exist®,...



Representing Experiment Information in a MIAME Object

“url®, "www.lab.not.exist",...

“title”, "Normal vs. Diseased Experiment”,...
"abstract”, "Example of using expression data“,...
"other”, {"Notes:Created from a text file."});

3 Display information about the MIAME object, MIAMEObj 2.
MIAMEObj 2
MIAMEObj2 =
Experiment Description:
Author name: Jane Researcher
Laboratory: One Bioinformatics Laboratory
Contact information: jresearcher@lab.not.exist
URL: www.lab.not.exist
PubMedIDs:
Abstract: A 4 word abstract is available. Use the Abstract property.
No experiment design summary available.

Other notes:
"Notes:Created from a text file."

Using Properties of a MIAME Object

To access properties of a MIAME object, use the following syntax:
objectname .propertyname

For example, to retrieve the PubMed identifier of publications related to a MIAME
object:

MIAMEObj1.PubMedID

ans =

17003243

To set properties of a MIAME object, use the following syntax:
objectname _propertyname = propertyvalue

For example, to set the Laboratory property of a MIAME object:

MIAMEObj1.Laboratory = *XYZ Lab*

Note: Property names are case sensitive. For a list and description of all properties of a
MIAME object, see MIAME class.
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Using Methods of a MIAME Object

To use methods of a MIAME object, use either of the following syntaxes:
objectname .methodname

or

methodname (objectname)

For example, to determine if a MIAME object is empty:

MIAMEObj1. isempty
ans =

0

Note: For a complete list of methods of a MIAME object, see MIAME class.
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Representing All Data in an ExpressionSet Object

In this section...

“Overview of ExpressionSet Objects” on page 4-25
“Constructing ExpressionSet Objects” on page 4-27

“Using Properties of an ExpressionSet Object” on page 4-28
“Using Methods of an ExpressionSet Object” on page 4-28

Overview of ExpressionSet Objects

You can store all microarray experiment data and information in one object by
assembling the following into an ExpressionSet object:

*  One ExptData object containing expression values from a microarray experiment in
one or more DataMatrix objects

*  One MetaData object containing sample metadata in two dataset (Statistics and
Machine Learning Toolbox) arrays

*  One MetaData object containing feature metadata in two dataset arrays

*  One MIAME object containing experiment descriptions

The following graphic illustrates a typical ExpressionSet object and its component
objects.
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ExpressionSset object

DataMatrix object DataMatrix object DataMatrix object

dataset array

Each element (DataMatrix object) in the ExpressionSet object has an element name.
Also, there is always one DataMatrix object whose element name is Expressions.
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An ExpressionSet object lets you store, manage, and subset the data from a microarray
gene expression experiment. An ExpressionSet object includes properties and methods
that let you access, retrieve, and change data, metadata, and other information about the
microarray experiment. These properties and methods are useful to view and analyze the
data. For a list of the properties and methods, see ExpressionSet class.

Constructing ExpressionSet Objects

Note: The following procedure assumes you have executed the example code in the
previous sections:

“Representing Expression Data Values in ExptData Objects” on page 4-11
“Representing Sample and Feature Metadata in MetaData Objects” on page 4-15
“Representing Experiment Information in a MIAME Object” on page 4-21

Import the bioma package so that the ExpresssionSet constructor function is
available.

import bioma.*

Construct an ExpressionSet object from EDObj, an ExptData object, MDObj2, a
MetaData object containing sample variable information, and MIAMEObJ, a MIAME
object.

ESObj = ExpressionSet(EDObj, "SData", MDObj2, “Elnfo", MIAMEObj1);
Display information about the ExpressionSet object, ESObj.

ESObj

ExpressionSet
Experiment Data: 500 features, 26 samples
Element names: Expressions
Sample Data:
Sample names: A, B, ...,Z (26 total)
Sample variable names and meta information:
Gender: Gender of the mouse in study
Age: The number of weeks since mouse birth
Type: Genetic characters
Strain: The mouse strain
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Source: The tissue source for RNA collection
Feature Data: none
Experiment Information: use “exptinfo(obj)*

For complete information on constructing ExpressionSet objects, see ExpressionSet class.

Using Properties of an ExpressionSet Object
To access properties of an ExpressionSet object, use the following syntax:
objectname .propertyname

For example, to determine the number of samples in an ExpressionSet object:

ESObj -NSamples
ans =

26

Note: Property names are case sensitive. For a list and description of all properties of an
ExpressionSet object, see ExpressionSet class.

Using Methods of an ExpressionSet Object

To use methods of an ExpressionSet object, use either of the following syntaxes:

objectname .methodname

or

methodname (objectname)

For example, to retrieve the sample variable names from an ExpressionSet object:

ESObj -sampleVarNames
ans =
"Gender-* "Age* "Type* "Strain” "Source”

To retrieve the experiment information contained in an ExpressionSet object:



Representing All Data in an ExpressionSet Object

exptInfo(ESObj)
ans =

Experiment description
Author name: Mika, ,Silvennoinen
Riikka, ,KivelAa
Maarit, ,Lehti
Anna-Maria, ,Touvras
Jyrki, ,Komulainen
Veikko, ,Vihko
Heikki, ,Kainulainen
Laboratory: XYZ Lab
Contact information: Mika, ,Silvennoinen
URL:
PubMedIDs: 17003243

Abstract: A 90 word abstract is available Use the Abstract property.
Experiment Design: A 234 word summary is available Use the ExptDesign property.

Other notes:
[1x80 charl]

Note: For a complete list of methods of an ExpressionSet object, see ExpressionSet class.
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In this section...

“Overview of the Mouse Example” on page 4-30
“Exploring the Microarray Data Set” on page 4-31
“Spatial Images of Microarray Data” on page 4-33
“Statistics of the Microarrays” on page 4-42
“Scatter Plots of Microarray Data” on page 4-44

Overview of the Mouse Example

This example looks at the various ways to visualize microarray data. The data comes
from a pharmacological model of Parkinson's disease (PD) using a mouse brain. The
microarray data for this example is from Brown, V.M., Ossadtchi, A., Khan, A.-H., Yee,
S., Lacan, G., Melega, W.P., Cherry, S.R., Leahy, R.M., and Smith, D.dJ.; "Multiplex three
dimensional brain gene expression mapping in a mouse model of Parkinson's disease";
Genome Research 12(6): 868-884 (2002).

The microarray data used in this example is available in a Web supplement to the paper
by Brown et al. and in the file mouse_alpd.gpr included with the Bioinformatics
Toolbox software.

http://labs.pharmacology.ucla.edu/smithlab/genome_multiplex/

The microarray data is also available on the Gene Expression Omnibus Web site at

http://www._ncbi.nlm_nih._gov/geo/query/acc.cgi?acc=GSE30

The GenePix GPR-formatted file mouse_alpd.gpr contains the data for one of the
microarrays used in the study. This is data from voxel A1l of the brain of a mouse

in which a pharmacological model of Parkinson's disease (PD) was induced using
methamphetamine. The voxel sample was labeled with Cy3 (green) and the control,
RNA from a total (not voxelated) normal mouse brain, was labeled with Cy5 (red). GPR
formatted files provide a large amount of information about the array, including the
mean, median, and standard deviation of the foreground and background intensities of
each spot at the 635 nm wavelength (the red, Cy5 channel) and the 532 nm wavelength
(the green, Cy3 channel).


http://labs.pharmacology.ucla.edu/smithlab/genome_multiplex/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30
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Exploring the Microarray Data Set

This procedure illustrates how to import data from the Web into the MATLAB
environment, using data from a study about gene expression in mouse brains as an
example. See “Overview of the Mouse Example” on page 4-30.

1 Read data from a file into a MATLAB structure. For example, in the MATLAB
Command Window, type

pd = gprread("mouse_alpd.gpr-)
Information about the structure displays in the MATLAB Command Window:

pd =
Header: [1x1 struct]
Data: [9504x38 double]
Blocks: [9504x1 double]
Columns: [9504x1 double]
Rows: [9504x1 double]
Names: {9504x1 cell}
IDs: {9504x1 cell}
ColumnNames: {38x1 cell}
Indices: [132x72 double]
Shape: [1x1 struct]

2  Access the fields of a structure using StructureName.FieldName. For example,
you can access the field ColumnNames of the structure pd by typing

pd.ColumnNames

The column names are shown below.

ans =
N
—y-
"Dia."
"F635 Median*
"F635 Mean*®
"F635 SD*
"B635 Median*
"B635 Mean*®
"B635 SD*
"% > B635+1SD"
"% > B635+2SD"
"F635 % Sat."
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"F532 Median*
"F532 Mean*®

"F532 SD*

"B532 Median*
"B532 Mean*

"B532 SD*

"% > B532+1SD*

"% > B532+2SD*
"F532 % Sat."
"Ratio of Medians*
"Ratio of Means”
"Median of Ratios”
"Mean of Ratios”
"Ratios SD*

"Rgn Ratio”

"Rgn R2*

"F Pixels"

"B Pixels”

"Sum of Medians”
"Sum of Means*”
"Log Ratio”

"F635 Median - B635*
"F532 Median - B532F
"F635 Mean - B635*
"F532 Mean - B532F
"Flags*®

3  Access the names of the genes. For example, to list the first 20 gene names, type

pd.Names(1:20)

A list of the first 20 gene names is displayed:

ans =

"AA467053"
"AA388323"
"AA387625"
"AA474342"
“"Myolb*®

"AA473123"
"AA387579"
"AA387314"
"AA467571"

~Spop~
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"AA547022*"
"Al1508784*"
"AA413555*"
"AA414733"

“Sntal*”
"Al414419"
"W14393*
"W10596*

Spatial Images of Microarray Data

This procedure illustrates how to visualize microarray data by plotting image maps.
The function maimage can take a microarray data structure and create a pseudocolor
image of the data arranged in the same order as the spots on the array. In other words,
maimage plots a spatial plot of the microarray.

This procedure uses data from a study of gene expression in mouse brains. For a list of
field names in the MATLAB structure pd, see “Exploring the Microarray Data Set” on
page 4-31.

1  Plot the median values for the red channel. For example, to plot data from the field
F635 Median, type

figure
maimage(pd, "F635 Median"®)

The MATLAB software plots an image showing the median pixel values for the
foreground of the red (Cy5) channel.
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FE35 Median TN

2 Plot the median values for the green channel. For example, to plot data from the
field F532 Median, type

figure
maimage(pd, "F532 Median~®)
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The MATLAB software plots an image showing the median pixel values of the
foreground of the green (Cy3) channel.

F532 Median

Plot the median values for the red background. The field B635 Median shows the
median values for the background of the red channel.

figure
maimage(pd, "B635 Median™)

4-35



4 Microarray Analysis

The MATLAB software plots an image for the background of the red channel. Notice
the very high background levels down the right side of the array.

BE3S Median

2500

42000

41500

1000

s00

4  Plot the medial values for the green background. The field B532 Median shows the
median values for the background of the green channel.

figure
maimage(pd, "B532 Median®)
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The MATLAB software plots an image for the background of the green channel.

B532 Median

400

- 350

- 300

- 250

200

150

The first array was for the Parkinson's disease model mouse. Now read in the data
for the same brain voxel but for the untreated control mouse. In this case, the voxel
sample was labeled with Cy3 and the control, total brain (not voxelated), was labeled

with Cy5.

wt = gprread("mouse_alwt.gpr-)

The MATLAB software creates a structure and displays information about the

structure.
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wt

Header: [1x1 struct]
Data: [9504x38 double]
Blocks: [9504x1 double]
Columns: [9504x1 double]
Rows: [9504x1 double]
Names: {9504x1 cell}
IDs: {9504x1 cell}
ColumnNames: {38x1 cell}
Indices: [132x72 double]
Shape: [1x1 struct]

6 Use the function maimage to show pseudocolor images of the foreground and
background. You can use the function subplot to put all the plots onto one figure.

figure

subplot(2,2,1);
maimage(wt, "F635 Median®)
subplot(2,2,2);
maimage(wt, "F532 Median®)
subplot(2,2,3);
maimage(wt, "B635 Median®)
subplot(2,2,4);
maimage(wt, "B532 Median®)
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The MATLAB software plots the images.

F535 Median TiM F532 Median nt

—= MW = M o P

BR35 Median B532 Median

w

2500
2000
1500
1000
500

If you look at the scale for the background images, you will notice that the
background levels are much higher than those for the PD mouse and there appears
to be something nonrandom affecting the background of the Cy3 channel of this
slide. Changing the colormap can sometimes provide more insight into what is going
on in pseudocolor plots. For more control over the color, try the colormapeditor
function.

colormap hot
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The MATLAB software plots the images.

FE35 Median Fa32 Median 1ot
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BE3S Median B532 Median

2500
2000
1500
1000
500

8 The function maimage is a simple way to quickly create pseudocolor images of
microarray data. However if you want more control over plotting, it is easy to create
your own plots using the function imagesc.

First find the column number for the field of interest.
b532MedCol = find(strcmp(wt.ColumnNames, "B532 Median®))
The MATLAB software displays:

b532MedCol =
16

9 Extract that column from the field Data.

b532Data = wt.Data(:,b532MedCol);
10 Use the field Indices to index into the Data.

figure
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11

subplot(1,2,1);
imagesc(b532Data(wt. Indices))
axis image

colorbar

title("B532 Median®)

The MATLAB software plots the image.

B532 Median

20

40 2000

B0
1500

80

1000
100

120 &00

20 40 all]

Bound the intensities of the background plot to give more contrast in the image.

maskedData = b532Data;
maskedData(b532Data<500) = 500;
maskedData(b532Data>2000) = 2000;

subplot(1,2,2);
imagesc(maskedData(wt. Indices))
axis image

colorbar

title("Enhanced B532 Median®)

4-41



4 Microarray Analysis

The MATLAB software plots the images.
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Statistics of the Microarrays

This procedure illustrates how to visualize distributions in microarray data. You can use
the function maboxplot to look at the distribution of data in each of the blocks.

1 Inthe MATLAB Command Window, type

figure

subplot(2,1,1)

maboxplot(pd, "F532 Median®,"title","Parkinson®"s Disease Model Mouse®)
subplot(2,1,2)

maboxplot(pd, "B532 Median®,"title","Parkinson®"s Disease Model Mouse®)
figure

subplot(2,1,1)

maboxplot(wt, "F532 Median®,"title", "Untreated Mouse")

subplot(2,1,2)

maboxplot(wt, "B532 Median®,"title", "Untreated Mouse")

The MATLAB software plots the images.
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2 Compare the plots.

From the box plots you can clearly see the spatial effects in the background
intensities. Blocks numbers 1, 3, 5, and 7 are on the left side of the arrays, and
numbers 2, 4, 6, and 8 are on the right side. The data must be normalized to remove
this spatial bias.

Scatter Plots of Microarray Data

This procedure illustrates how to visualize expression levels in microarray data. There
are two columns in the microarray data structure labeled "F635 Median - B635"
and "F532 Median - B532". These columns are the differences between the median
foreground and the median background for the 635 nm channel and 532 nm channel
respectively. These give a measure of the actual expression levels, although since the
data must first be normalized to remove spatial bias in the background, you should

be careful about using these values without further normalization. However, in this
example no normalization is performed.
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Rather than working with data in a larger structure, it is often easier to extract the
column numbers and data into separate variables.

cy5DataCol = find(strcmp(wt.ColumnNames, "F635 Median - B635%))
cy3DataCol = find(strcmp(wt.ColumnNames, "F532 Median - B532"%))
cybData = pd.Data(:,cy5DataCol);

d

p
cy3Data pd.Data(:,cy3DataCol);

The MATLAB software displays:

cy5DataCol
34

cy3DataCol
35

A simple way to compare the two channels is with a loglog plot. The function
maloglog is used to do this. Points that are above the diagonal in this plot
correspond to genes that have higher expression levels in the Al voxel than in the
brain as a whole.

figure

maloglog(cy5Data,cy3Data)

xlabel ("F635 Median - B635 (Control)");
ylabel ("F532 Median - B532 (Voxel Al)");

The MATLAB software displays the following messages and plots the images.

Warning: Zero values are ignored

(Type "warning off Bioinfo:MaloglogZerovalues"™ to suppress
this warning.)

Warning: Negative values are ignored.

(Type "warning off Bioinfo:MaloglogNegativeValues'"™ to suppress
this warning.)
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Notice that this function gives some warnings about negative and zero elements.
This is because some of the values in the "F635 Median - B635" and "F532
Median - B532" columns are zero or even less than zero. Spots where this
happened might be bad spots or spots that failed to hybridize. Points with positive,
but very small, differences between foreground and background should also be
considered to be bad spots.

Disable the display of warnings by using the warning command. Although warnings
can be distracting, it is good practice to investigate why the warnings occurred
rather than simply to ignore them. There might be some systematic reason why they
are bad.

warnState = warning; % First save the current warning
state.
% Now turn off the two warnings.
warning("off", "Bioinfo:MaloglogZeroValues®);
warning("off", "Bioinfo:MaloglogNegativeValues®);
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figure
maloglog(cy5Data, cy3Data) % Create the loglog plot
warning(warnState); % Reset the warning state.

xlabel ("F635 Median - B635 (Control)®);
ylabel ("F532 Median - B532 (Voxel Al)");

The MATLAB software plots the image.

F532 Median - B532 (Woxel Al)

—
=
1
T

P o gl vl 1 Ll L Ll 1 1111
10° 10° 10°
FE35 Median - BE3S (Control)
An alternative to simply ignoring or disabling the warnings is to remove the bad
spots from the data set. You can do this by finding points where either the red or

green channel has values less than or equal to a threshold value. For example, use a
threshold value of 10.

threshold
badPoints

10;
(cy5Data <= threshold) | (cy3Data <= threshold);
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The MATLAB software plots the image.
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5 You can then remove these points and redraw the loglog plot.

cySData(badPoints) = []; cy3Data(badPoints) = [];
figure

maloglog(cy5Data, cy3Data)

xlabel ("F635 Median - B635 (Control)®);

ylabel ("F532 Median - B532 (Voxel Al)");
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The MATLAB software plots the image.
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This plot shows the distribution of points but does not give any indication about
which genes correspond to which points.

Add gene labels to the plot. Because some of the data points have been removed, the
corresponding gene IDs must also be removed from the data set before you can use
them. The simplest way to do that is wt. IDs(~badPoints).

maloglog(cy5Data,cy3Data, " labels® ,wt. IDs(~badPoints), ...
"factorlines”,?2)

xlabel ("F635 Median - B635 (Control)*);

ylabel ("F532 Median - B532 (Voxel Al)");
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The MATLAB software plots the image.
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Try using the mouse to click some of the outlier points.

You will see the gene ID associated with the point. Most of the outliers are below the
y = Xline. In fact, most of the points are below this line. Ideally the points should
be evenly distributed on either side of this line.

Normalize the points to evenly distribute them on either side of the line. Use the
function manorm to perform global mean normalization.

normcy5
normcy3

mannorm(cy5Data) ;
manorm(cy3Data) ;

If you plot the normalized data you will see that the points are more evenly
distributed about the y = X line.

figure

maloglog(normecy5,normecy3, " labels® ,wt. IDs(~badPoints), ...
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"factorlines”,?2)
xlabel ("F635 Median - B635 (Control)®);
ylabel ("F532 Median - B532 (Voxel Al)");

The MATLAB software plots the image.

F532 Median - B532 Woxel AT)

1|:|'3 A Lol Ll Ll M

10 10 10" 10" 10’
FB35 Median - BE3S (Control)

The function mairplot is used to create an Intensity vs. Ratio plot for the
normalized data. This function works in the same way as the function maloglog.

figure

mairplot(normcy5,normecy3, " labels® ,wt. IDs(~badPoints), ...
"factorlines®,?2)
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The MATLAB software plots the image.
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10 You can click the points in this plot to see the name of the gene associated with the
plot.
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In this section...

“Overview of the Yeast Example” on page 4-53
“Exploring the Data Set” on page 4-53
“Filtering Genes” on page 4-57

“Clustering Genes” on page 4-59

“Principal Component Analysis” on page 4-64

Overview of the Yeast Example

This example demonstrates a number of ways to look for patterns in gene expression
profiles, using gene expression data from yeast shifting from fermentation to respiration.

The microarray data for this example is from DeRisi, J.L., Iyer, V.R., and Brown, P.O.
(Oct 24, 1997). Exploring the metabolic and genetic control of gene expression on a
genomic scale. Science, 278 (5338), 680—686. PMID: 9381177.

The authors used DNA microarrays to study temporal gene expression of almost all
genes in Saccharomyces cerevisiae during the metabolic shift from fermentation to
respiration. Expression levels were measured at seven time points during the diauxic
shift. The full data set can be downloaded from the Gene Expression Omnibus Web site
at:

http://www.ncbi.nlm._nih.gov/geo/query/acc.cgi?acc=GSE28

Exploring the Data Set

This procedure illustrates how to import data from the Web into the MATLAB
environment. The data for this procedure is available in the MAT-file yeastdata.mat.
This file contains the VALUE data or LOG_RAT2N_MEAN, or log2 of ratio of
CH2DN_MEAN and CH1DN_MEAN from the seven time steps in the experiment,

the names of the genes, and an array of the times at which the expression levels were
measured.

1 Load data into the MATLAB environment.
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load yeastdata.mat

Get the size of the data by typing

numel (genes)

The number of genes in the data set displays in the MATLAB Command Window.
The MATLAB variable genes is a cell array of the gene names.

ans =
6400

Access the entries using cell array indexing.
genes{15}

This displays the 15th row of the variable yeastvalues, which contains expression
levels for the open reading frame (ORF) YAL054C.

ans =
YALO54C

Use the function web to access information about this ORF in the Saccharomyces
Genome Database (SGD).

url = sprintf(...
"http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=%s", ...

genes{15});
web(url);

A simple plot can be used to show the expression profile for this ORF.
plot(times, yeastvalues(15,:))

xlabel ("Time (Hours)®);
ylabel ("Log2 Relative Expression Level®);

The MATLAB software plots the figure. The values are logs ratios.
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Log2 Relative Expression Level
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Plot the actual values.
plot(times, 2."yeastvalues(15,:))

xlabel ("Time (Hours)");
ylabel ("Relative Expression Level™);

The MATLAB software plots the figure. The gene associated with this ORF, ACS1,
appears to be strongly up-regulated during the diauxic shift.
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Compare other genes by plotting multiple lines on the same figure.

hold on

plot(times, 2."yeastvalues(16:26,:)")
xlabel("Time (Hours)™);

ylabel ("Relative Expression Level™);
title("Profile Expression Levels®);

The MATLAB software plots the image.

25
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Filtering Genes

This procedure illustrates how to filter the data by removing genes that are not
expressed or do not change. The data set is quite large and a lot of the information
corresponds to genes that do not show any interesting changes during the experiment. To
make it easier to find the interesting genes, reduce the size of the data set by removing
genes with expression profiles that do not show anything of interest. There are 6400
expression profiles. You can use a number of techniques to reduce the number of
expression profiles to some subset that contains the most significant genes.

1 If you look through the gene list you will see several spots marked as "EMPTY".
These are empty spots on the array, and while they might have data associated with
them, for the purposes of this example, you can consider these points to be noise.
These points can be found using the strcmp function and removed from the data set
with indexing commands.
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emptySpots = strcmp("EMPTY",genes);
yeastvalues(emptySpots,:) = [1;
genes(emptySpots) = [];

numel (genes)

The MATLAB software displays:

ans =
6314

In the yeastvalues data you will also see several places where the expression

level is marked as NaN. This indicates that no data was collected for this spot at the
particular time step. One approach to dealing with these missing values would be

to impute them using the mean or median of data for the particular gene over time.
This example uses a less rigorous approach of simply throwing away the data for any
genes where one or more expression levels were not measured.

Use the isnan function to identify the genes with missing data and then use
indexing commands to remove the genes.

nanlndices = any(isnan(yeastvalues),2);
yeastvalues(nanlndices,:) = [1;
genes(nanlndices) = [];

numel (genes)

The MATLAB software displays:

ans =
6276

If you were to plot the expression profiles of all the remaining profiles, you would see
that most profiles are flat and not significantly different from the others. This flat
data is obviously of use as it indicates that the genes associated with these profiles
are not significantly affected by the diauxic shift. However, in this example, you are
interested in the genes with large changes in expression accompanying the diauxic
shift. You can use filtering functions in the toolbox to remove genes with various
types of profiles that do not provide useful information about genes affected by the
metabolic change.

Use the function genevarfilter to filter out genes with small variance over time.
The function returns a logical array of the same size as the variable genes with
ones corresponding to rows of yeastvalues with variance greater than the 10th
percentile and zeros corresponding to those below the threshold.
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mask = genevarfilter(yeastvalues);

% Use the mask as an index into the values to remove the
% filtered genes.

yeastvalues = yeastvalues(mask,:);

genes = genes(mask);

numel (genes)

The MATLAB software displays:

ans =
5648

The function genelowval i lter removes genes that have very low absolute
expression values. Note that the gene filter functions can also automatically
calculate the filtered data and names.

[mask, yeastvalues, genes] = genelowvalfilter(yeastvalues,genes,. ..
"absval®,1092(4));
numel (genes)

The MATLAB software displays:

ans =
423

Use the function geneentropyfi lter to remove genes whose profiles have low
entropy:

[mask, yeastvalues, genes] = geneentropyfilter(yeastvalues,genes, ...

"prctile”,15);
numel (genes)

The MATLAB software displays:

ans = 310

Clustering Genes

Now that you have a manageable list of genes, you can look for relationships between
the profiles using some different clustering techniques from the Statistics and Machine
Learning Toolbox software.

For hierarchical clustering, the function pdist calculates the pairwise distances
between profiles, and the function 1inkage creates the hierarchical cluster tree.
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corrDist = pdist(yeastvalues, “corr®);
clusterTree = linkage(corrDist, "average®);

The function cluster calculates the clusters based on either a cutoff distance or
a maximum number of clusters. In this case, the "maxclust” option is used to
identify 16 distinct clusters.

clusters = cluster(clusterTree, "maxclust®, 16);

The profiles of the genes in these clusters can be plotted together using a simple loop
and the function subplot.

figure

for ¢ = 1:16
subplot(4,4,c);
plot(times,yeastvalues((clusters == ¢),:)");
axis tight

end

suptitle("Hierarchical Clustering of Profiles”);

The MATLAB software plots the images.
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The Statistics and Machine Learning Toolbox software also has a K-means
clustering function. Again, 16 clusters are found, but because the algorithm is
different these are not necessarily the same clusters as those found by hierarchical
clustering.

[cidx, ctrs] = kmeans(yeastvalues, 16,...
“dist","corr-,...
“rep*,5,...
"disp”®,"final");
figure
for ¢ = 1:16
subplot(4,4,c);
plot(times,yeastvalues((cidx == ¢),:)");
axis tight
end
suptitle("K-Means Clustering of Profiles®);

The MATLAB software displays:
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13 iterations, total sum of distances = 11.4042
14 iterations, total sum of distances = 8.62674
26 i1terations, total sum of distances = 8.86066
22 i1terations, total sum of distances = 9.77676

26 i1terations, total sum of distances = 9.01035

_Io/x]
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5 Instead of plotting all of the profiles, you can plot just the centroids.

figure
for ¢ = 1:16
subplot(4,4,c);
plot(times,ctrs(c,:)");
axis tight
axis off % turn off the axis
end

suptitle("K-Means Clustering of Profiles®);

The MATLAB software plots the figure:
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You can use the function clustergram to create a heat map and dendrogram from
the output of the hierarchical clustering.

figure

clustergram(yeastvalues(:,2:end), "RowLabels” ,genes, . . .
“ColumnLabels”,times(2:end))

The MATLAB software plots the figure:
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Principal Component Analysis

Principal-component analysis (PCA) is a useful technique you can use to reduce the
dimensionality of large data sets, such as those from microarray analysis. You can also
use PCA to find signals in noisy data.

1  Use the pca function in the Statistics and Machine Learning Toolbox software to
calculate the principal components of a data set.

[pc, zscores, pcvars] = pca(yeastvalues)
The MATLAB software displays:
pc =

Columns 1 through 4

-0.0245 -0.3033 -0.1710 -0.2831
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0.0186 -0.5309 -0.3843 -0.5419
0.0713 -0.1970 0.2493 0.4042
0.2254 -0.2941 0.1667 0.1705
0.2950 -0.6422 0.1415 0.3358
0.6596 0.1788 0.5155 -0.5032
0.6490 0.2377 -0.6689 0.2601

Columns 5 through 7

-0.1155 0.4034 0.7887
-0.2384 -0.2903 -0.3679
-0.7452 -0.3657 0.2035
-0.2385 0.7520 -0.4283
0.5592 -0.2110 0.1032
-0.0194 -0.0961 0.0667
-0.0673 -0.0039 0.0521

You can use the function cumsum to see the cumulative sum of the variances.
cumsum(pcvars./sum(pcvars) * 100)

The MATLAB software displays:

ans =
78.3719
89.2140
93.4357
96.0831
98.3283
99.3203
100.0000

This shows that almost 90% of the variance is accounted for by the first two principal
components.

A scatter plot of the scores of the first two principal components shows that there are
two distinct regions. This is not unexpected, because the filtering process removed
many of the genes with low variance or low information. These genes would have
appeared in the middle of the scatter plot.

figure
scatter(zscores(:,1),zscores(:,2));

xlabel ("First Principal Component®);
ylabel ("Second Principal Component®);
title("Principal Component Scatter Plot");
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The MATLAB software plots the figure:
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The gname function from the Statistics and Machine Learning Toolbox software can
be used to identify genes on a scatter plot. You can select as many points as you like
on the scatter plot.

gname(genes);

When you have finished selecting points, press Enter.

An alternative way to create a scatter plot is with the gscatter function from the
Statistics and Machine Learning Toolbox software. gscatter creates a grouped
scatter plot where points from each group have a different color or marker. You can
use clusterdata, or any other clustering function, to group the points.

figure

pcclusters = clusterdata(zscores(:,1:2),6);
gscatter(zscores(:,1),zscores(:,2),pcclusters)

xlabel ("First Principal Component®);

ylabel ("Second Principal Component®);

title("Principal Component Scatter Plot with Colored Clusters™);
ghame(genes) % Press enter when you finish selecting genes.
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The MATLAB software plots the figure:
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This example shows how to detect DNA copy number alterations in genome-wide array-
based comparative genomic hybridization (CGH) data.

Introduction

Copy number changes or alterations is a form of genetic variation in the human genome
[1]. DNA copy number alterations (CNAs) have been linked to the development and
progression of cancer and many diseases.

DNA microarray based comparative genomic hybridization (CGH) is a technique allows
simultaneous monitoring of copy number of thousands of genes throughout the genome
[2,3]. In this technique, DNA fragments or "clones" from a test sample and a reference
sample differentially labeled with dyes (typically, Cy3 and Cy5) are hybridized to
mapped DNA microarrays and imaged. Copy number alterations are related to the

Cy3 and Cy5 fluorescence intensity ratio of the targets hybridized to each probe on a
microarray. Clones with normalized test intensities significantly greater than reference
intensities indicate copy number gains in the test sample at those positions. Similarly,
significantly lower intensities in the test sample are signs of copy number loss. BAC
(bacterial artificial chromosome) clone based CGH arrays have a resolution in the order
of one million base pairs (1Mb) [3]. Oligonucleotide and ¢cDNA arrays provide a higher
resolution of 50-100kb [2].

Array CGH log2-based intensity ratios provide useful information about genome-wide
CNAs. In humans, the normal DNA copy number is two for all the autosomes. In an ideal
situation, the normal clones would correspond to a log2 ratio of zero. The log2 intensity
ratios of a single copy loss would be -1, and a single copy gain would be 0.58. The goal is
to effectively identify locations of gains or losses of DNA copy number.

The data in this example is the Coriell cell line BAC array CGH data analyzed by
Snijders et al.(2001). The Coriell cell line data is widely regarded as a "gold standard"
data set. You can download this data of normalized log2-based intensity ratios and the
supplemental table of known karyotypes from http://www.nature.com/ng/journal/v29/
n3/suppinfo/ng754_S1.html. You will compare these cytogenically mapped alterations
with the locations of gains or losses identified with various functions of MATLAB and its
toolboxes.

For this example, the Coriell cell line data are provided in a MAT file. The data
file coriell _baccgh.mat contains coriell_data, a structure containing of the
normalized average of the log2-based test to reference intensity ratios of 15 fibroblast


http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754_S1.html
http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754_S1.html
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cell lines and their genomic positions. The BAC targets are ordered by genome position
beginning at Ip and ending at Xq.

load coriell_baccgh
coriell_data

coriell _data =
struct with fields:

Sample: {1x15 cell}
Chromosome: [2285x1 int8]
GenomicPosition: [2285x1 int32]
Log2Ratio: [2285x15 double]
FISHMap: {2285x1 cell}

Visudlizing the Genome Profile of the Array CGH Data Set

You can plot the genome wide log2-based test/reference intensity ratios of DNA clones.
In this example, you will display the log2 intensity ratios for cell line GM03576 for
chromosomes 1 through 23.

Find the sample index for the CM03576 cell line.

sample = find(strcmpi(coriell_data.Sample, "GM03576%))

sample =

8

To label chromosomes and draw the chromosome borders, you need to find the number of
data points of in each chromosome.

chr_nums = zeros(1, 23);

chr_data_len = zeros(1,23);

for ¢ = 1:23
tmp = coriell_data.Chromosome == c;
chr_nums(c) = Ffind(tmp, 1, “last");
chr_data_len(c) = length(find(tmp));

end

% Draw a vertical bar at the end of a chromosome to indicate the border
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X_vbar
y_vbar

= repmat(chr_nums, 3, 1);

= repmat([2;-2;NaN], 1, 23);

% Label the autosomes with their chromosome numbers, and the sex chromosome
% with X.

x_label = chr_nums - ceil(chr_data_len/2);

y_label = zeros(l1, length(x_label)) - 1.6;

chr_labels = num2str((1:1:23)");

chr_labels = cellstr(chr_labels);

chr_labels{end} = "X";

figure
hold on
h_ratio = plot(coriell_data.Log2Ratio(:,sample), ".");
h_vbar line(x_vbar, y vbar, “color®, [0.8 0.8 0.8]);
h_text = text(x_label, y label, chr_labels, ...
"fontsize", 8, “HorizontalAlignment®, “center®);

h_axis = h_ratio.Parent;
h_axis_XTick = [];
h_axis.YGrid = "on";
h_axis.Box = "on";
xim([0 chr_nums(23)])

ylim([-1.5 1.5])

title(coriell_data.Sample{sample})
xlabel({"", "Chromosome®})

ylabel ("Log2(T/R) ")

hold off
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In the plot, borders between chromosomes are indicated by grey vertical bars. The plot
indicates that the GM03576 cell line is trisomic for chromosomes 2 and 21 [3].

You can also plot the profile of each chromosome in a genome. In this example, you will
display the log2 intensity ratios for each chromosome in cell line GM05296 individually.

sample = find(strcmpi(coriell_data.Sample, "GM05296%));

figure;

for ¢ = 1:23
idx = coriell_data.Chromosome == c;
chr_y = coriell_data.Log2Ratio(idx, sample);
subplot(5,5,c);

hp = plot(chr_y, ".7);
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line([0, chr_data_len(c)], [0,0], “color®, "r%);
h_axis = hp.Parent;
h_axis.XTick = [1;
h_axis.Box = "on";
xim([0 chr_data_len(c)])
ylim([-1.5 1.5])
xlabel(["chr ° chr_labels{c}], “FontSize", 8)
end
suptitle("GM05296%);
GMO05296
1 1 1 1 1
0 [] oo [ 0 . 0
-1 -1 -1 -1 . -1
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1 1 1 1 1
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-1 -1 -1 . -1 -1
chr 6 chr 7 chr 8 chr 9 chr 10
1 1 1 1 1
0 ﬂi-* [} [ttt et [ -—M{ T
-1 -1 -1 -1 -1
chr 11 chr12 chr13 chr 14 chr 15
1 1 1 1 1
0 0 . 1 i s B e s e BN o
-1 -1 -1 -1 -1
chr 16 chr 17 chr 18 chr 19 chr 20
1 1 1 [’ SR
[ e ) B R I I |
-1 -1 -1
chr 21 chr 22 chrX

The plot indicates the GM05296 cell line has a partial trisomy at chromosome 10 and a

partial monosomy at chromosome 11.
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Observe that the gains and losses of copy number are discrete. These alterations occur in
contiguous regions of a chromosome that cover several clones to entitle chromosome.

The array-based CGH data can be quite noisy. Therefore, accurate identification of
chromosome regions of equal copy number that accounts for the noise in the data
requires robust computational methods. In the rest of this example, you will work with
the data of chromosomes 9, 10 and 11 of the GM05296 cell line.

Initialize a structure array for the data of these three chromosomes.

GM05296_Data = struct("Chromosome®, {9 10 11}, ...
“GenomicPosition™, {[1, 1, [}.---
"LogZRatio”, {[1, 1. [I},---
“SmoothedRatio”, {[1, [1. [3}.---
"DiffRatio”, {[1, [1. [1}.---
"Seglindex”, {[1. 1. });

Filtering and Smoothing Data

A simple approach to perform high-level smoothing is to use a nonparametric filter. The
function mslowess implements a linear fit to samples within a shifting window, is this
example you use a SPAN of 15 samples.

for iloop = 1:1ength(GM05296_Data)
idx = coriell_data.Chromosome == GM05296_Data(iloop) .Chromosome;
chr_x = coriell_data.GenomicPosition(idx);
chr_y = coriell_data.Log2Ratio(idx, sample);

% Remove NaN data points

idx = ~isnan(chr_y);

GM05296_Data(iloop) .GenomicPosition = double(chr_x(idx));
GM05296_Data(iloop)-Log2Ratio = chr_y(idx);

% Smoother
GM05296_Data(iloop) .SmoothedRatio = ...
mslowess(GM05296_Data(iloop) -GenomicPosition, . ..
GM05296_Data(iloop).Log2Ratio,. .
"SPAN",15);

% Find the derivative of the smoothed ratio
GM05296_Data(iloop).DiffRatio = ...
diff([0; GM05296_Data(iloop).SmoothedRatio]);
end
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To better visualize and later validate the locations of copy number changes, we

need cytoband information. Read the human cytoband information from the
hs_cytoBand. txt data file using the cytobandread function. It returns a structure of
human cytoband information [4].

hs_cytobands = cytobandread("hs_cytoBand.txt")

% Find the centromere positions for the chromosomes.
acen_idx = strcmpi(hs_cytobands.GieStains, “acen®);
acen_ends = hs_cytobands.BandEndBPs(acen_idx);

% Convert the cytoband data from bp to kilo bp because the genomic
% positions in Coriell Cell Line data set are in kilo base pairs.
acen_pos = acen_ends(1:2:end)/1000;

hs_cytobands =
struct with fields:

ChromLabels: {862x1 cell}
BandStartBPs: [862x1 int32]
BandEndBPs: [862x1 int32]
BandLabels: {862x1 cell}
GieStains: {862x1 cell}

You can inspect the data by plotting the log2-based ratios, the smoothed ratios and the
derivative of the smoothed ratios together. You can also display the centromere position
of a chromosome in the data plots. The magenta vertical bar marks the centromere of the
chromosome.

for iloop = 1:1ength(GM05296_Data)

chr = GM05296_Data(iloop) -Chromosome;

chr_x = GM05296_Data(iloop) .GenomicPosition;

figure

hold on

plot(chr_x, GM05296_Data(iloop).Log2Ratio, ".7);

line(chr_x, GM05296_Data(iloop).SmoothedRatio, - ..
"Color®, "r", "LineWidth®, 2);

line(chr_x, GM05296_Data(iloop).DiffRatio, ...
"Color®, "k", "LineWidth®, 2);

line([acen_pos(chr), acen_pos(chr)], [-1, 1],---
"Color®, "m", "LineWidth®, 2, "LineStyle®, "-_.7");
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end

061

04r

0.2r

if iloop ==
legend("Raw” , "Smoothed®, "Diff", “Centromere®);

end

yhim([-1, 1]

xlabel ("Genomic Position®)

ylabel ("Log2(T/R)")

title(sprintf("GM05296: Chromosome %d *, chr))

hold off

GM05296: Chromosome 9

Raw
Smoothed
Doiff

= Centromere

6 8 10 12
Genomic Position « 10%
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Detecting Change-Points

The derivatives of the smoothed ratio over a certain threshold usually indicate
substantial changes with large peaks, and provide the estimate of the change-point
indices. For this example you will select a threshold of 0.1.

thrd = 0.1;

for iloop = 1:1ength(GM05296_Data)
idx = Find(abs(GM05296_ Data(iloop).DiffRatio) > thrd );
N = numel (GM05296_Data(iloop) -SmoothedRatio);
GM05296_Data(iloop) -Seglndex = [1;idx;N];

% Number of possible segments found
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fprintf("%d segments initially found on Chromosome %d.\n", ...
numel (GM05296_Data(iloop) -Segindex) - 1,...
GM05296_Data(iloop) -Chromosome)
end

1 segments initially found on Chromosome 9.
4 segments initially found on Chromosome 10.
5 segments initially found on Chromosome 11.

Optimizing Change-Points by GM Clustering

Gaussian Mixture (GM) or Expectation-Maximization (EM) clustering can provide fine
adjustments to the change-point indices [5]. The convergence to statistically optimal
change-point indices can be facilitated by surrounding each index with equal-length set
of adjacent indices. Thus each edge is associated with left and right distributions. The
GM clustering learns the maximum-likelihood parameters of the two distributions. It
then optimally adjusts the indices given the learned parameters.

You can set the length for the set of adjacent positions distributed around the change-
point indices. For this example, you will select a length of 5. You can also inspect each
change-point by plotting its GM clusters. In this example, you will plot the GM clusters
for the Chromosome 10 data.

len = 5;
for iloop = 1:1ength(GM05296_Data)
seg_num = numel (GM05296_Data(iloop) -Seglndex) - 1;
if seg_num > 1
% Plot the data points in chromosome 10 data
if GM05296_Data(iloop)-Chromosome == 10
figure
hold on;
plot(GM05296_Data(iloop) .GenomicPosition, . ..
GM05296_Data(iloop).Log2Ratio, ".7)
ylim([-0.5, 1])
xlabel ("Genomic Position®)
ylabel ("Log2(T/R) ")
title(sprintf("Chromosome %d - GM05296*,
GM05296_Data(iloop) -Chromosome))
end

segidx = GM05296_Data(iloop)-Seglndex;
segidx_emadj = GM05296_Data(iloop).Seglndex;

for jloop = 2:seg_num
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ileft = min(segidx(Jloop) - len, segidx(jloop));

iright = max(segidx(jloop) + len, segidx(jloop));

gmx = GM05296_Data(iloop) -GenomicPosition(ileft:iright);
gmy = GM05296_Data(iloop).-SmoothedRatio(ileft:iright);

% Select initial guess for the of cluster index for each point.
gmpart = (gmy > (min(gmy) + range(gmy)/2)) + 1;

% Create a Gaussian mixture model object
gm = gmdistribution_fit(gmy, 2, “start®, gmpart);
gmid = cluster(gm,gmy);

segidx_emadj(Jloop) = find(abs(diff(gmid))==1) + ileft;

% Plot GM clusters for the change-points in chromosome 10 data
if GM05296_Data(iloop).Chromosome == 10
plot(gmx(gmid==1),gmy(gmid==1), "g.",...
gmx(gmid==2), gmy(gmid==2), "r.")
end
end

% Remove repeat indices

zeroidx = [diff(segidx_emadj) == 0; 0];

GM05296_Data(iloop).-Seglndex = segidx_emadj(~zeroidx);
end

% Number of possible segments found
fprintf("%d segments found on Chromosome %d after GM clustering adjustment_\n",.._.
numel (GM05296_Data(iloop) -Segindex) - 1,...
GM05296_Data(iloop) -Chromosome)
end
hold off;

1 segments found on Chromosome 9 after GM clustering adjustment.

3 segments found on Chromosome 10 after GM clustering adjustment.
5 segments found on Chromosome 11 after GM clustering adjustment.
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Testing Change-Point Significance

Once you determine the optimal change-point indices, you also need to determine if
each segment represents a statistically significant changes in DNA copy number. You
will perform permutation t-tests to assess the significance of the segments identified. A
segment includes all the data points from one change-point to the next change-point or
the chromosome end. In this example, you will perform 10,000 permutations of the data
points on two consecutive segments along the chromosome at the significance level of

0.01.

alpha = 0.01;
for iloop = 1:1ength(GM05296_Data)
seg_num = numel (GM05296_Data(iloop) -Seglndex) - 1;
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end

seg_index = GM05296_Data(iloop).Seglndex;
if seg_num > 1
ppvals = zeros(seg_num+1l, 1);

for sloop = 1:seg_num-1

end

seglidx = seg_index(sloop):seg_index(sloop+1)-1;

if sloop== seg_num-1

seg2idx = seg_index(sloop+1):(seg_index(sloop+2));
else

seg2idx = seg_index(sloop+1):(seg_index(sloop+2)-1);

end

segl = GM05296_Data(iloop).SmoothedRatio(seglidx);
seg2 = GM05296_Data(iloop).SmoothedRatio(seg2idx);
nl = numel(segl);

n2 = numel(seg2);

N = nl+n2;

segs = [segl;seg?];

% Compute observed t statistics
t_obs = mean(segl) - mean(seg2);

% Permutation test
iter = 10000;
t_perm = zeros(iter,1l);
for i = 1l:iter
randseg = segs(randperm(N));
t_perm(i) = abs(mean(randseg(1:nl))-mean(randseg(nl+1:N)));
end
ppvals(sloop+1l) = sum(t_perm >= abs(t_obs))/iter;

sigidx = ppvals < alpha;
GM05296_Data(iloop)-Seglndex = seg_index(sigidx);

end

% Number segments after significance tests
fprintf("%d segments found on Chromosome %d after significance tests.\n",.

numel (GM05296_Data(iloop) .Seglndex) - 1, GM05296 Data(iloop) -Chromosome)

1 segments found on Chromosome 9 after significance tests.
3 segments found on Chromosome 10 after significance tests.

4-81



4 Microarray Analysis

4-82

4 segments found on Chromosome 11 after significance tests.

Assessing Copy Number Alterations

Cytogenetic study indicates cell line GM05296 has a trisomy at 10q21-10g24 and a
monosomy at 11p12-11p13 [3]. Plot the segment means of the three chromosomes over
the original data with bold red lines, and add the chromosome ideograms to the plots
using the chromosomeplot function. Note that the genomic positions in the Coriell cell
line data set are in kilo base pairs. Therefore, you will need to convert cytoband data
from bp to kilo bp when adding the ideograms to the plot.

for

end

iloop = 1:1ength(GM05296_Data)

figure;

seg_num = numel (GM05296_Data(iloop).Seglindex) - 1;

seg_mean = ones(seg_num,1);

chr_num = GM05296_Data(iloop) .Chromosome;

for jloop = 2:seg_num+l
idx = GM05296_Data(iloop).Seglndex(jloop-1):GM05296 Data(iloop).Seglndex(jloop’
seg_mean(idx) = mean(GM05296_Data(iloop).Log2Ratio(idx));
1ine(GM05296_Data(iloop) .GenomicPosition(idx), seg_mean(idx), ...

“color®, "r", "linewidth", 3);

end

1ine(GM05296_Data(iloop).GenomicPosition, GM05296_ Data(iloop).Log2Ratio,...
"linestyle®, "none®, "Marker®™, "_.");

line(Jacen_pos(chr_num), acen_pos(chr_num)], [-1, 1],---.
"linewidth", 2,...
"color®, "m",...
"linestyle®, "-.%);

ylabel ("Log2(T/R) ")

ax = gca;

ax.Box = "on";

ylhim([-1, 11)

title(sprintf("Chromosome %d - GM05296%, chr_num));
chromosomeplot(hs_cytobands, chr_num, “addtoplot®, gca, “unit®, 2)
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As shown in the plots, no copy number alterations were found on chromosome 9, there is
copy number gain span from 10g21 to 10924, and a copy number loss region from 11pi2
to 11p13. The CNAs found match the known results in cell line GM05296 determined by
cytogenetic analysis.

You can also display the CNAs of the GM05296 cell line align to the chromosome
ideogram summary view using the chromosomeplot function. Determine the genomic
positions for the CNAs on chromosomes 10 and 11.

chrl0_idx = GM05296_Data(2)-Seglndex(2):GM05296_Data(2) -Seglndex(3)-1;
chrl0_cna_start = GM05296_Data(2) .GenomicPosition(chrl0_idx(1))*1000;
chr10_cna_end = GM05296_Data(2) .GenomicPosition(chrl0_idx(end))*1000;

chrll_idx = GM05296_Data(3)-Seglndex(2):GM05296_Data(3) -Seglndex(3)-1;
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chrll_cna_start = GM05296_Data(3).GenomicPosition(chrll_idx(1))*1000;
chrll_cna_end = GM05296 Data(3).GenomicPosition(chrll_idx(end))*1000;

Create a structure containing the copy number alteration data from the GM05296 cell
line data according to the input requirements of the chromosomeplot function.

cna_struct = struct("Chromosome®, [10 11],---
"CNVType®, [2 11,---
"Start”, [chrl0_cna_start, chrll_cna_start], ...
"End", [chr10_cna_end, chrill_cna_end])

cna_struct =
struct with fields:
Chromosome: [10 11]
CNVType: [2 1]

Start: [69209000 34420000]
End: [105905000 35914000]

chromosomeplot(hs_cytobands, “cnv®, cna_struct, “unit®, 2)
title("Human Karyogram with Copy Number Alterations of GM05296")
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This example shows how MATLAB and its toolboxes provide tools for the analysis and
visualization of copy-number alterations in array-based CGH data.
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Exploring Microarray Gene Expression Data

This example shows how to identify differentially expressed genes from microarray data
and uses Gene Ontology to determine significant biological functions that are associated
to the down- and up-regulated genes.

Introduction

Microarrays contain oligonucleotide or cDNA probes for comparing the expression profile
of genes on a genomic scale. Determining if changes in gene expression are statistically
significant between different conditions, e.g. two different tumor types, and determining
the biological function of the differentially expressed genes, are important aims in a
microarray experiment.

A publicly available dataset containing gene expression data of 42 tumor tissues of the
embryonal central nervous system (CNS) [1] is used for this example. The CEL files

can be downloaded from the CNS experiment web site. The samples were hybridized

on Affymetrix® HuGeneFL GeneChip® arrays. The raw dataset was preprocessed

with the Robust Multi-array Average (RMA) and GC Robust Multi-array Average
(GCRMA) procedures. For further information on Affymetrix oligonucleotide microarray
preprocessing, see Preprocessing Affymetrix Microarray Data at the Probe Level.

You will use the t-test and false discovery rate to detect differentially expressed genes
between two tumor types. Additionally, you will look at Gene Ontology terms related to
the significantly up-regulated genes.

Loading the Expression Data

Load the MAT file cnsexpressiondata containing three DataMatrix objects associated
with the gene expression values preprocessed using RMA (expr_cns_rma), GCRMA
with Maximum Likelihood Estimate (expr_cns_gcrma_mle), and GCRMA with
Empirical-Bayes estimate (expr_cns_gcrma_eb).

load cnsexpressiondata

In each DataMatrix object, each row corresponds to a probe set on the array, and each
column corresponds to a sample. The DataMatrix object expr_cns_gcrma_eb will be
used in this example, but data from either one of the other two expression variables can
be used as well.

Retrieve the properties of the DataMatrix object expr_cns_gcrma_eb using the get
command.
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get(expr_cns_gcrma_eb)
Name: **

RowNames: {7129x1 cell}

ColNames: {1x42 cell}

NRows: 7129
NCols: 42
NDims: 2

ElementClass: "single”

Determine the number of genes and number of samples by accessing the number of rows
and number of columns of the DataMatrix object respectively.

nGenes = expr_cns_gcrma_eb._NRows
nSamples = expr_cns_gcrma_eb._NCols
nGenes =

7129

nSamples =

42

A mapping between the probe set ID and the corresponding gene symbol is provided as
Map object in the MAT file HuGeneFL_GeneSymbol_Map.

load HuGeneFL_GeneSymbol_Map

Annotate the expression values in expr_cns_gcrma_eb with the corresponding gene
symbols by creating a cell array of gene symbols from the Map object and setting the row
names of the Data Matrix object.

huGenes = values(hu6800GeneSymbolMap, expr_cns_gcrma_eb.RowNames);
expr_cns_gcrma_eb = rownames(expr_cns_gcrma_eb, ":", huGenes);

Filtering the Expression Data

Many probe sets in this example are not annotated, not expressed or have a small
variability across samples. Use the following techniques to filter out these genes.



Exploring Microarray Gene Expression Data

Remove gene expression data with empty gene symbols (in this example, the empty
symbols are labeled as "-—-").

expr_cns_gcrma_eb("---", ) = [1;

Use genelowval fi lter to filter out genes with very low absolute expression values.
[~, expr_cns_gcrma_eb] = genelowvalfilter(expr_cns_gcrma_eb);

Use genevarfilter to filter out genes with a small variance across samples.

[~, expr_cns_gcrma_eb] = genevarfilter(expr_cns_gcrma_eb);

Determine the number of genes after filtering.

nGenes = expr_cns_gcrma_eb.NRows

nGenes

5669

Identifying Differential Gene Expression

You can now compare the gene expression values between two groups of data: CNS
medulloblastomas (MD) and non-neuronal origin malignant gliomas (Mglio) tumor.

From the expression data of all 42 samples in the dataset, extract the data of the 10 MD
samples and the 10 Mglio samples.

MDs = strncmp(expr_cns_gcrma_eb.ColNames, "Brain_MD", 8);
Mglios = strncmp(expr_cns_gcrma_eb.ColNames, "Brain_MGlio", 11);

MDData = expr_cns_gcrma_eb(:, MDs);
get(MDData)

MglioData = expr_cns_gcrma_eb(:, Mglios);
get(MglioData)
Name: **
RowNames: {5669x1 cell}
ColNames: {1x10 cell}
NRows: 5669
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NCols: 10
NDims: 2
ElementClass: "single”
Name: **
RowNames: {5669x1 cell}
ColNames: {1x10 cell}

NRows: 5669
NCols: 10
NDims: 2

ElementClass: "single”

Conduct a t-test for each gene to identify significant changes in expression values
between the MD samples and Mglio samples. You can inspect the test results from the
normal quantile plot of t-scores and the histograms of t-scores and p-values of the t-tests.

[pvalues, tscores] = mattest(MDData, MglioData,. ..
“Showhist®, true®, “Showplot”, true);
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Histograms of t-test Results
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In any test situation, two types of errors can occur, a false positive by declaring that a
gene is differentially expressed when it is not, and a false negative when the test fails
to identify a truly differentially expressed gene. In multiple hypothesis testing, which
simultaneously tests the null hypothesis of thousands of genes, each test has a specific
false positive rate, or a false discovery rate (FDR). False discovery rate is defined as the
expected ratio of the number of false positives to the total number of positive calls in a
differential expression analysis between two groups of samples [2].

In this example, you will compute the FDR using the Storey-Tibshirani procedure [2].
The procedure also computes the g-value of a test, which measures the minimum FDR
that occurs when calling the test significant. The estimation of FDR depends on the
truly null distribution of the multiple tests, which is unknown. Permutation methods
can be used to estimate the truly null distribution of the test statistics by permuting
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the columns of the gene expression data matrix [2][3]. Depending on the sample size, it
may not be feasible to consider all possible permutations. Usually a random subset of
permutations are considered in the case of large sample size. Use the nchoosek function
in Statistics and Machine Learning Toolbox™ to find out the number of all possible
permutations of the samples in this example.

all_possible_perms = nchoosek(1:MDData.NCols+MglioData.NCols, MDData.NCols);
size(all_possible_perms, 1)
ans =

184756

Perform a permutation t-test using mattest and the PERMUTE option to compute the
p-values of 10,000 permutations by permuting the columns of the gene expression data
matrix of MDData and MglioData [3].

pvaluesCorr = mattest(MDData, MglioData, "Permute®, 10000);

Determine the number of genes considered to have statistical significance at the p-value
cutoff of 0.05. Note: You may get a different number of genes due to the permutation test
outcome.

cutoff = 0.05;
sum(pvaluesCorr < cutoff)
ans =

2121

Estimate the FDR and q-values for each test using mafdr. The quantity pi0 is the overall
proportion of true null hypotheses in the study. It is estimated from the simulated null
distribution via bootstrap or the cubic polynomial fit. Note: You can also manually set the
value of lambda for estimating pi0.

figure;
[pFDR, qvalues] = mafdr(pvaluesCorr, “showplot®, true);
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Determine the number of genes that have g-values less than the cutoff value. Note:
You may get a different number of genes due to the permutation test and the bootstrap

outcomes.

sum(qgvalues < cutoff)

ans =

2167

Many genes with low FDR implies that the two groups, MD and Mglio, are biologically

distinct.
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You can also empirically estimate the FDR adjusted p-values using the Benjamini-
Hochberg (BH) procedure [4] by setting the mafdr input parameter BHFDR to true.

pvaluesBH = mafdr(pvaluesCorr, °"BHFDR", true);
sum(pvaluesBH < cutoff)
ans =

1373

You can store the t-scores, p-values, pFDRs, q-values and BH FDR corrected p-values
together as a DataMatrix object.

testResults = [tscores pvaluesCorr pFDR qvalues pvaluesBH];

Update the column name for BH FDR corrected p-values using the colnames method of
DataMatrix object.

testResults = colnames(testResults, 5, {"FDR_BH"});
You can sort by p-values pvaluesCorr using the sortrows mathod.

testResults = sortrows(testResults, 2);

Display the first 20 genes in testResults. Note: Your results may be different from
those shown below due to the permutation test and the bootstrap outcomes.

testResults(1:20, :)

ans =
t-scores p-values FDR g-values FDR_BH
RAB31 -13.664 5.1444e-11 1.0471e-07 1.0471e-07 2.9164e-07
PLEC1 -9.6223 1.0596e-07 0.00010784 8.8536e-05 0.00024658
HNRPA1 9.359 2.0854e-07 0.0001415 8.8536e-05 0.00024658
FCGR2A -9.3548 2.2318e-07 0.00011357 8.8536e-05 0.00024658
PLEC1 -9.3495 2.6476e-07 0.00010778 8.8536e-05 0.00024658
FBL 9.1518 3.1671e-07 0.00010744 8.8536e-05 0.00024658
K1AA0367 -8.996 3.8835e-07 0.00011293 8.8536e-05 0.00024658
1D2B -8.9285 4.0623e-07 0.00010336 8.8536e-05 0.00024658
RBMX 8.8905 4.2322e-07 9.5717e-05 8.8536e-05 0.00024658
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PAFAH1B3

H3F3A
LRP1
PEA15
1D2B
SFRS3

HLA-DPA1

C50rfi13

PTMA
NAP1L1
HMGB2

8.7561
8.6512
-8.6465
-8.3256
-8.1183
8.1166
-7.8546
7.7195
7.7013
7.674
7.6532

4_.5893e-07
5.0812e-07
5.2195e-07
7.5427e-07
8.4551e-07
8.4672e-07
1.0944e-06
1.1781e-06

1.213e-06
1.3307e-06
1.3559e-06

9.3415e-05
9.4024e-05
8.8536e-05
0.0001181
0.00012293
0.0001149
0.00013923
0.00014106
0.00013717
0.00014255
0.000138

8.8536e-05
8.8536e-05
8.8536e-05
0.0001149
0.0001149
0.0001149
0.00013717
0.00013717
0.00013717
0.000138
0.000138

0.00024658
0.00024658
0.00024658

0.00032

0.00032

0.00032
0.00038204
0.00038204
0.00038204
0.00038434
0.00038434

A gene is considered to be differentially expressed between the two groups of samples

if it shows both statistical and biological significance. This example compares the gene
expression ratio of MD over Mglio tumor samples. Therefore an up-regulated gene in this
example has higher expression in MD, and down-regulated gene has higher expression in

Mglio.

Plot the -log10 of p-values against the biological effect in a volcano plot. Note: From the
volcano plot UI, you can interactively change the p-value cutoff and fold change limit,
and export differentially expressed genes.

diffStruct

diffStruct

Name:

mavolcanoplot(MDData, MglioData, pvaluesCorr)

PVCutoff: 0.0500
FCThreshold: 2

GenelLabels:
PValues:
FoldChanges:

{327x1 cell}
[327x1 bioma.data.DataMatrix]
[327x1 bioma.data.DataMatrix]

"Differentially Expressed”
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Genes p-values
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2.0522211e-006
2.05959442-006

Ctrl-click genes in the gene lists to label the genes in the plot. As seen in the volcano plot,
genes specific for neuronal based cerebella granule cells, such as ZIC and NEUROD,

are found in the up-regulated gene list, while genes typical of the astrocytic and
oligodendrocytic lineage and cell differentiation, such as SOX2, PEA15, and ID2B, are
found in the down-regulated list.

Determine the number of differentially expressed genes.

nDiFfGenes =

nDiFfFGenes

diffStruct.PValues.NRows
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In particular, determine the list of up-regulated genes and the list of down-regulated
genes for MD compared to Mglio.

up_geneidx = Find(diffStruct.FoldChanges > 0);
nUpGenes = length(up_geneidx)

down_geneidx = Find(diffStruct.FoldChanges < 0);
nDownGenes = length(down_geneidx)

nUpGenes =

225

nDownGenes =

102

Annotating Up-Regulated Genes Using Gene Ontology

You can use Gene Ontology (GO) information to annotate the differentially
expressed genes identified above. The annotation file for Homo sapiens

(gene_association.goa_human.gz) can be downloaded from Gene Ontology Current
Annotations. For convenience, a map between the gene symbols and associated GO IDs

relatively to the aspect field Function is included in the MAT file goa_human.

load goa_human

Alternatively, you can run the code below to download the Gene Ontology database with

the latest annotations, read the downloaded Homo sapiens annotation file and create a
mapping between the gene symbols and the associated GO terms.

% GO = geneont("live®,true);

% HGann = goannotread("gene_association.goa _human®, ...

% "Aspect”,"F","Fields”,{"DB_Object_Symbol*","GOid"});
% HGmap = containers.Map();

% for 1 = 1:numel(HGann)

% key = HGann(i).DB_Object_Symbol;

% it isKey(HGmap,key)


http://geneontology.org/page/download-annotations
http://geneontology.org/page/download-annotations
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% HGmap(key) = [HGmap(key) HGann(i).-GOid];
% else

% HGmap(key) = HGann(i).GOid;

% end

% end

Find the indices of the up-regulated genes for Gene Ontology analysis.

up_genes = rownames(diffStruct.FoldChanges, up_geneidx);
huGenes = rownames(expr_cns_gcrma_eb);
for i1 = 1:nUpGenes
up_geneidx(i) = Find(strncmpi(huGenes, up_genes{i}, length(up_genes{i})), 1);
end

Not all the genes on the HuGeneFL chip are annotated. For every gene on the chip, see if
it is annotated by comparing its gene symbol to the list of gene symbols from GO. Track
the number of annotated genes and the number of up-regulated genes associated with
each GO term. Note that data in public repositories is frequently curated and updated;
therefore the results of this example might be slightly different when you use up-to-date
datasets. It is also possible that you get warnings about invalid or obsolete IDs due to an
updated Homo sapiens gene annotation file.

m = GO.Terms(end).id; % gets the last term id
chipgenesCount = zeros(m,1); % a vector of GO term counts for the entire chip.
upgenesCount = zeros(m,1l); % a vector of GO term counts Tor up-regulated genes.

for i = 1:length(huGenes)
iT isKey(HGmap,huGenes{i})
goid = getrelatives(GO,HGmap(huGenes{i}));
chipgenesCount(goid) = chipgenesCount(goid) + 1;
if (any(i == up_geneidx))
upgenesCount(goid) = upgenesCount(goid) + 1;
end
end
end

Determine the statistically significant GO terms using the hypergeometric probability
distribution. For each GO term, a p-value is calculated representing the probability that
the number of annotated genes associated with it could have been found by chance.

gopvalues = hygepdf(upgenesCount,max(chipgenesCount), ...
max(upgenesCount),chipgenesCount);
[dummy, idx] = sort(gopvalues);

Report the top ten most significant GO terms as follows.
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report = sprintf("GO Term p-value counts definition\n®);
for i = 1:10
term = idx(i);
report = sprintf("%s%s\t%-1.5F\t%3d 7/ %3d\ths...\n", ...
report, char(num2goid(term)), gopvalues(term), ...
upgenesCount(term), chipgenesCount(term), ...
GOo(term) .Term.definition(2:min(50,end)));

end

disp(report);

GO Term p-value counts definition

G0:0005515 0.00000 131 / 3459 Interacting selectively and non-covalently with a...
G0:0044822 0.00000 94 / 514 Interacting non-covalently with a poly(A) RNA, a ...
G0:0003723 0.00000 95 / 611 Interacting selectively and non-covalently with a...
G0:0003729 0.00000 82 / 460 Interacting selectively and non-covalently with m.__.
G0:0003735 0.00000 54 / 159 The action of a molecule that contributes to the ...
G0:0019843 0.00000 48 / 186 Interacting selectively and non-covalently with r._..
G0:0008135 0.00000 50 / 208 Functions during translation by interacting selec...
G0:0000049 0.00000 47 / 188 Interacting selectively and non-covalently with t...
G0:0000498 0.00000 46 / 179 Interacting selectively and non-covalently with r...
G0:0001069 0.00000 46 / 179 Interacting selectively and non-covalently with a...

Select the GO terms related to specific molecule functions and build a sub-ontology that
includes the ancestors of the terms. Visualize this ontology using the biograph function.
You can color the graphs nodes according to their significance. In this example, the

red nodes are the most significant, while the blue nodes are the least significant gene
ontology terms. Note: The GO terms returned may differ from those shown due to the
frequent update to the Homo sapiens gene annotation file.

fcnAncestors = GO(getancestors(GO, idx(1:5)));
[cm,acc,rels] = getmatrix(fcnAncestors);
BG = biograph(cm,get(fcnAncestors.Terms, "name”));

for i = 1l:numel(acc)
pval = gopvalues(acc(i));
color = [(1-pval).-~(1) pval.~(1/8) pval.~(1/8)];
BG.Nodes(i) -Color = color;

end

view(BG)
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Finding the Differentially Expressed Genes in Pathways

You can query the pathway information of the differentially expressed genes from the
KEGG pathway database through KEGG's Web Service.

Following are a few pathway maps with the genes in the up-regulated gene list
highlighted:

Cell Cycle

Hedgehog Signaling pathway
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mTor Signaling pathway
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Overview of Phylogenetic Analysis

Phylogenetic analysis is the process you use to determine the evolutionary relationships
between organisms. The results of an analysis can be drawn in a hierarchical diagram
called a cladogram or phylogram (phylogenetic tree). The branches in a tree are based
on the hypothesized evolutionary relationships (phylogeny) between organisms. Each
member in a branch, also known as a monophyletic group, is assumed to be descended
from a common ancestor. Originally, phylogenetic trees were created using morphology,
but now, determining evolutionary relationships includes matching patterns in nucleic
acid and protein sequences.
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Building a Phylogenetic Tree

In this section...

“Overview of the Primate Example” on page 5-3

“Searching NCBI for Phylogenetic Data” on page 5-4
“Creating a Phylogenetic Tree for Five Species” on page 5-6
“Creating a Phylogenetic Tree for Twelve Species” on page 5-8

“Exploring the Phylogenetic Tree” on page 5-10

Note: For information on creating a phylogenetic tree with multiply aligned sequences,
see the phytree function.

Overview of the Primate Example

In this example, a phylogenetic tree is constructed from mitochondrial DNA (mtDNA)
sequences for the family Hominidae. This family includes gorillas, chimpanzees,
orangutans, and humans.

The following procedures demonstrate the phylogenetic analysis features in the
Bioinformatics Toolbox software. They are not intended to teach the process of
phylogenetic analysis, but to show you how to use MathWorks products to create a
phylogenetic tree from a set of nonaligned nucleotide sequences.

The origin of modern humans is a heavily debated issue that scientists have recently
tackled by using mitochondrial DNA (mtDNA) sequences. One hypothesis explains the
limited genetic variation of human mtDNA in terms of a recent common genetic ancestry,
implying that all modern population mtDNA originated from a single woman who lived
in Africa less than 200,000 years ago.

Why Use Mitochondrial DNA Sequences for Phylogenetic Study?
Mitochondrial DNA sequences, like the Y chromosome, do not recombine and are
inherited from the maternal parent. This lack of recombination allows sequences to

be traced through one genetic line and all polymorphisms assumed to be caused by
mutations.
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Mitochondrial DNA in mammals has a faster mutation rate than nuclear DNA
sequences. This faster rate of mutation produces more variance between sequences and
is an advantage when studying closely related species. The mitochondrial control region
(Displacement or D-loop) is one of the fastest mutating sequence regions in animal DNA.

Neanderthal DNA

The ability to isolate mitochondrial DNA (mtDNA) from palaeontological samples has
allowed genetic comparisons between extinct species and closely related nonextinct
species. The reasons for isolating mtDNA instead of nuclear DNA in fossil samples have
to do with the fact that:

* mtDNA, because it is circular, is more stable and degrades slower then nuclear DNA.

+ Each cell can contain a thousand copies of mtDNA and only a single copy of nuclear
DNA.

While there is still controversy as to whether Neanderthals are direct ancestors of
humans or evolved independently, the use of ancient genetic sequences in phylogenetic
analysis adds an interesting dimension to the question of human ancestry.
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Searching NCBI for Phylogenetic Data

The NCBI taxonomy Web site includes phylogenetic and taxonomic information from
many sources. These sources include the published literature, Web databases, and
taxonomy experts. And while the NCBI taxonomy database is not a phylogenetic or
taxonomic authority, it can be useful as a gateway to the NCBI biological sequence
databases.
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This procedure uses the family Hominidae (orangutans, chimpanzees, gorillas, and
humans) as a taxonomy example for searching the NCBI Web site and locating
mitochondrial D-loop sequences.

1  Use the MATLAB Help browser to search for data on the Web. In the MATLAB
Command Window, type

web("http://www._ncbi._nIm_nih.gov"™)

A separate browser window opens with the home page for the NCBI Web site.

2 Search the NCBI Web site for information. For example, to search for the human
taxonomy, from the Search list, select Taxonomy, and in the for box, enter
hominidae.

National Center for Biotechnology Information

National Library of Medicine Mational Institutes of Heallth
PubMed Entrez BLAST OMIM Books TaxBrowser Structure
Search ITaxnnnmy j for Ihnminidae

Y
#5 5
22 N STaxonomy
Entrez PubMed Nucleotide Protein Genome Structure PMC Taxonomy Books

Search ITalenlmer j for Ihnminidae Clear |

Limits  Preview/Index History Clipboard Details

Display iSummary j Show: |20 j Send to ITex‘t v

Entrez r1: Hominidae, family, mammals Links

PN

About Entrez

3 Select the taxonomy link for the family Hominidae. A page with the taxonomy for the
family is shown.
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< ) o ol Taxonom
<> NCBI £ N BI‘OWSEI‘Y

Entrez PubMed Nucleotide Protein Genome Structure PMC Taxonomy Books

Search fOI'I as Icumplete namej ~ lock
Clear
3 levels using filter: [none =
# Nucleotide — Protein r Structure 1 Genome I Popset ™
. r r GEO r r
B e (D Domains Expressions UniGene UniSTS
~ PubMed : i L
Central r r MapView  LinkOut r BLAST TRACE

Lineage (full): root; cellular organisms; Eukarvota; Funei/Metazoa sroup;
Metazoa; Emmetazoa; Bilateria; Coelomata; Deuterostomia; Chordata;
Craniata; Vertebrata; Gnathostomata; Teleostomi; Euteleostomai;
Sarcopteryeil; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Primates;
Catarrhini

o Hominidae click o organism name to get more nformation.

o Homo/Pan/Gorilla group

o Gorilla
+ Gorilla gorilla (gorilla)
o Homo

e Homo sapiens (human)
o Pan (chimpanzees)

» Pan paniscus (pygmy chimpanzee)
+ Pan troglodytes (chimpanzee)
o} Pong‘o

o Pongo pvgmaeus (orangutan)

» Pongo pvgmaeus abelii (Sumatran orangutan)

» Pongo pvgmaeus pvgmaeus (Bornean orangutan)
» Pongo sp.

Creating a Phylogenetic Tree for Five Species

Drawing a phylogenetic tree using sequence data is helpful when you are trying to
visualize the evolutionary relationships between species. The sequences can be multiply
aligned or a set of nonaligned sequences, you can select a method for calculating
pairwise distances between sequences, and you can select a method for calculating the
hierarchical clustering distances used to build a tree.
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After locating the GenBank accession codes for the sequences you are interested in
studying, you can create a phylogenetic tree with the data. For information on locating
accession codes, see “Searching NCBI for Phylogenetic Data” on page 5-4.

In the following example, you will use the Jukes-Cantor method to calculate distances
between sequences, and the Unweighted Pair Group Method Average (UPGMA) method
for linking the tree nodes.

1

Create a MATLAB structure with information about the sequences. This step uses
the accession codes for the mitochondrial D-loop sequences isolated from different
hominid species.

data = {"German_Neanderthal* "AF011222";
"Russian_Neanderthal* "AF254446" ;
"European_Human*® "X90314*
"Mountain_Gorilla_Rwanda® "AF089820";
"Chimp_Troglodytes* "AF176766" ;
};

Retrieve sequence data from the GenBank database and copy into the MATLAB
environment.

for ind = 1:5
segs(ind) .Header
segs(ind).Sequence

data{ind,1};
getgenbank(data{ind,2}, . - .
"sequenceonly”, true);

end

Calculate pairwise distances and create a phytree object. For example, compute the
pairwise distances using the Jukes-Cantor distance method and build a phylogenetic
tree using the UPGMA linkage method. Since the sequences are not prealigned,
seqpdist pairwise aligns them before computing the distances.

distances = seqpdist(seqs, "Method", "Jukes-Cantor", "Alphabet”, "DNA");
tree = seglinkage(distances, "UPGMA",seqs)

The MATLAB software displays information about the phytree object. The function
seqpdist calculates the pairwise distances between pairs of sequences while the
function seql inkage uses the distances to build a hierarchical cluster tree. First,
the most similar sequences are grouped together, and then sequences are added to
the tree in descending order of similarity.

Phylogenetic tree object with 5 leaves (4 branches)

Draw a phylogenetic tree.
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h = plot(tree, "orient”,"top~");
ylabel ("Evolutionary distance®)
set(h.terminalNodeLabels, "Rotation”,65)

The MATLAB software draws a phylogenetic tree in a Figure window. In the figure
below, the hypothesized evolutionary relationships between the species is shown by
the location of species on the branches. The horizontal distances do not have any
biological significance.
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Creating a Phylogenetic Tree for Twelve Species

Plotting a simple phylogenetic tree for five species seems to indicate a number of
monophyletic groups (see “Creating a Phylogenetic Tree for Five Species” on page

5-8
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5-6). After a preliminary analysis with five species, you can add more species to
your phylogenetic tree. Adding more species to the data set will help you to confirm the
observed monophyletic groups are valid.

1

Add more sequences to a MATLAB structure. For example, add mtDNA D-loop
sequences for other hominid species.

data2 = {"Puti_Orangutan” "AF451972";
"Jari_Orangutan” "AF451964* ;
"Western_Lowland_Gorilla® "AY079510";
"Eastern_Lowland_Gorilla® "AF050738";
"Chimp_Schweinfurthii” "AF176722";
"Chimp_Vellerosus™ "AF315498" ;
"Chimp_Verus* "AF176731";

}:

Get additional sequence data from the GenBank database, and copy the data into the
next indices of a MATLAB structure.

for ind = 1:7
segs(ind+5) .Header
segs(ind+5) .Sequence

data2{ind,1};
getgenbank(data2{ind,2}, ...
"sequenceonly®, true);

end

Calculate pairwise distances and the hierarchical linkage.

distances = seqpdist(seqs, "Method", "Jukes-Cantor"™, "Alpha”, "DNA");
tree = seglinkage(distances, "UPGMA",seqs);

Draw a phylogenetic tree.

h = plot(tree, "orient”,"top");

ylabel ("Evolutionary distance")
set(h.terminalNodelLabels, "Rotation”,65)

The MATLAB software draws a phylogenetic tree in a Figure window. You can see
four main clades for humans, gorillas, chimpanzee, and orangutans.



5 Phylogenetic Analysis

=
File Edit View Insert Tools Desktop Window Help N
NG ds [ [RXATDE 42 0Ead
0 [ T T T T T T T T I= T T T i
01t E
@
< )i
= 02} v .
-
=
2 03t 4
o
=
S 04t E
i
05+ I E
1 1 1 1 1 1 rf‘ ir‘j rj 1
= - E o I3
f & & 53,?9 f g}g gg § .§§ f é'f F
) N 5
g g :F 55 & éf § & (? @ ¥ "
§ 5§ 5§ FEL 0 9 FE
o & o & o & F F F F 2
§ § £ 4 § ¢ ¥ ¢ 3§ ¢
£ § ¢ & ¢ S § & &
o a5 o g & §
g ¢ =

Exploring the Phylogenetic Tree

After you create a phylogenetic tree, you can explore the tree using the MATLAB
command line or the Phylogenetic Tree app. This procedure uses the tree created in
“Creating a Phylogenetic Tree for Twelve Species” on page 5-8 as an example.

1 List the members of a tree.

names = get(tree, "LeafNames™)

names

"German_Neanderthal *
"Russian_Neanderthal*®
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"European_Human*®
"Chimp_Troglodytes*
"Chimp_Schweinfurthii”
"Chimp_Verus*
"Chimp_Vellerosus”
"Puti_Orangutan*
"Jari_Orangutan*
"Mountain_Gorilla_Rwanda*
"Eastern_Lowland_Gorilla*
"Western_Lowland_Gorilla*

From the list, you can determine the indices for its members. For example, the
European Human leaf is the third entry.

Find the closest species to a selected species in a tree. For example, find the species
closest to the European human.

[h_all,h_leaves] = select(tree, "reference”,3,...
"criteria®,"distance”, ...
"threshold®,0.6);

h_all is a list of indices for the nodes within a patristic distance of 0.6 to the
European human leaf, while h_leaves is a list of indices for only the leaf nodes
within the same patristic distance.

A patristic distance is the path length between species calculated from the
hierarchical clustering distances. The path distance is not necessarily the biological
distance.

List the names of the closest species.

subtree_names = names(h_leaves)

The MATLAB software prints a list of species with a patristic distance to the
European human less than the specified distance. In this case, the patristic distance
threshold is less than 0.6.

subtree_names =

"German_Neanderthal "
"Russian_Neanderthal*
"European_Human*®
"Chimp_Schweinfurthii”
"Chimp_Verus*
"Chimp_Troglodytes*”
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4 Extract a subtree from the whole tree by removing unwanted leaves. For example,
prune the tree to species within 0.6 of the European human species.

leaves_to_prune = ~h_leaves;

pruned_tree = prune(tree, leaves_to_prune)
h = plot(pruned_tree, “"orient”,"top~");
ylabel ("Evolutionary distance”®)
set(h.terminalNodeLabels, "Rotation”,65)

The MATLAB software returns information about the new subtree and plots the
pruned phylogenetic tree in a Figure window.

Phylogenetic tree object with 6 leaves (5 branches)
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5 Explore, edit, and format a phylogenetic tree using the Phylogenetic Tree app.
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phytreeviewer(pruned_tree)

The Phylogenetic Tree window opens, showing the tree.

Phylogenetic Tree 1

File

iy =
%

Tools  Window  Help
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German_Meanderthal

Russian_Meanderthal

European_Human

Chimp_Troglodytes

Chimp_Schweinfurthii

Chimp_Verus

You can interactively change the appearance of the tree using the app. For

information on using this app, see “Using the Phylogenetic Tree App” on page

5-14.
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Using the Phylogenetic Tree App

5-14

In this section...

“Overview of the Phylogenetic Tree App” on page 5-14
“Opening the Phylogenetic Tree App” on page 5-14
“File Menu” on page 5-15

“Tools Menu” on page 5-27

“Window Menu” on page 5-36

“Help Menu” on page 5-36

Overview of the Phylogenetic Tree App

The Phylogenetic Tree app allows you to view, edit, format, and explore phylogenetic tree
data. With this app you can prune, reorder, rename branches, and explore distances. You
can also open or save Newick or ClustalW tree formatted files. The following sections give
a description of menu commands and features for creating publishable tree figures.

Opening the Phylogenetic Tree App

This section illustrates how to draw a phylogenetic tree from data in a phytree object or
a previously saved file.

The Phylogenetic Tree app can read data from Newick and ClustalW tree formatted files.

This procedure uses the phylogenetic tree data stored in the file pFO0002. tree as an
example. The data was retrieved from the protein family (PFAM) Web database and
saved to a file using the accession number PFO0002 and the function gethmmtree.

1 Create a phytree object. For example, to create a phytree object from tree data in
the file pF00002. tree, type

tr = phytreeread("pf00002.tree")
The MATLAB software creates a phytree object.

Phylogenetic tree object with 33 leaves (32 branches)
2 View the phylogenetic tree using the app.

phytreeviewer(tr)
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Alternatively, click Phylogenetic Tree on the Apps tab.

Phylogenetic Tree 1
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File Menu

The File menu includes the standard commands for opening and closing a file, and it
includes commands to use phytree object data from the MATLAB Workspace. The File

menu commands are shown below.
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u Phylogenetic Tree 1

File | Tecls Window Help

Mew Viewer...
Open...
Import from Workspace...

Open Criginal in Mew Viewer

Save As..

Print to Figure k
Export to New Viewer »
Export to Workspace »
Export Setup...

Print Preview...

Print... Ctrl+P
Exit

New Viewer Command

Use the New Viewer command to open tree data from a file into a second Phylogenetic
Tree viewer.

1 From the File menu, select New Viewer.

The Open A Phylogenetic Tree dialog box opens.
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n OCpen A Phylogen... | =

— Choose tree source:

G Import from workspace

Select phytree object:

(") Open phylogenetic tree file

ook |

(Lcancel)

L

2 Choose the source for a tree.

MATLAB Workspace — Select the Import from Workspace options, and then
select a phytree object from the list.

+  File — Select the Open phylogenetic tree file option, click the Browse
button, select a directory, select a file with the extension .tree, and then click
Open. The toolbox uses the file extension .tree for Newick-formatted files, but
you can use any Newick-formatted file with any extension.

5-17



5 Phylogenetic Analysis

5-18

= Mew folder
Mame

demosearch
htrnl
ja
|| pfO0002.tree
] pﬁﬂﬂﬂﬂEfukree

A second Phylogenetic Tree viewer opens with tree data from the selected file.
Open Command

Use the Open command to read tree data from a Newick-formatted file and display that
data in the app.

1 From the File menu, click Open.

The Select Phylogenetic Tree File dialog box opens.

2 Select a directory, select a Newick-formatted file, and then click Open. The app uses
the file extension . tree for Newick-formatted files, but you can use any Newick-
formatted file with any extension.

The app replaces the current tree data with data from the selected file.

Import from Workspace Command

Use the Import from Workspace command to read tree data from a phytree object in
the MATLAB Workspace and display the data using the app.

1  From the File menu, select Import from Workspace.

The Get Phytree Object dialog box opens.
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i Y
B Get.. | = 2|
Select phytree object:
tr -
| Import | | Cancel |
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2 From the list, select a phytree object in the MATLAB Workspace.
3  Click the Import button.

The app replaces the current tree data with data from the selected object.
Open Original in New Viewer

There may be times when you make changes that you would like to undo. The
Phylogenetic Tree app does not have an undo command, but you can get back to the
original tree you started viewing with the Open Original in New Viewer command.

From the File menu, select Open Original in New Viewer.
A new Phylogenetic Tree viewer opens with the original tree.
Save As Command

After you create a phytree object or prune a tree from existing data, you can save the
resulting tree in a Newick-formatted file. The sequence data used to create the phytree
object is not saved with the tree.

1 From the File menu, select Save As.

The Save Phylogenetic tree as dialog box opens.
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2 In the Filename box, enter the name of a file. The toolbox uses the file extension
.tree for Newick-formatted files, but you can use any file extension.

3 Click Save.

The app saves tree data without the deleted branches, and it saves changes to
branch and leaf names. Formatting changes such as branch rotations, collapsed
branches, and zoom settings are not saved in the file.

Export o New Viewer Command

Because some of the Phylogenetic Tree viewer commands cannot be undone (for example,
the Prune command), you might want to make a copy of your tree before trying a
command. At other times, you might want to compare two views of the same tree, and
copying a tree to a new tool window allows you to make changes to both tree views
independently .

1 Select File > Export to New Viewer, and then select either With Hidden Nodes
or Only Displayed.
A new Phylogenetic Tree viewer opens with a copy of the tree.

2 Use the new figure to continue your analysis.
Export to Workspace Command

The Phylogenetic Tree app can open Newick-formatted files with tree data. However,
it does not create a phytree object in the MATLAB Workspace. If you want to
programmatically explore phylogenetic trees, you need to use the Export to Workspace
command.

1 Select File > Export to Workspace, and then select either With Hidden Nodes or
Only Displayed.
The Export to Workspace dialog box opens.

2 Inthe Workspace variable name box, enter the name for your phylogenetic tree
data. For example, enter MyTree.
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ru Export tl = | |_ﬂhr

Workspace variable name 7
MyTree
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3 Click OK.

The app creates a phytree object in the MATLAB Workspace.
Print to Figure Command

After you have explored the relationships between branches and leaves in your tree, you
can copy the tree to a MATLAB Figure window. Using a Figure window lets you use all
the features for annotating, changing font characteristics, and getting your figure ready
for publication. Also, from the Figure window, you can save an image of the tree as it was
displayed in the Phylogenetic Tree app.

1  From the File menu, select Print to Figure, and then select either With Hidden
Nodes or Only Displayed.

The Print Phylogenetic Tree to Figure dialog box opens.
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Print Phylogenetic Tree to Figure

2 Select one of the Rendering Types.
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Rendering Type

Description

"square” (default)
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Rendering Type Description
"angular” [ ]
"radial*
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Rendering Type Description

"equalangle*

Tip: This rendering type hides the significance of the root
node and emphasizes clusters, thereby making it useful
for visually assessing clusters and detecting outliers.

"equaldaylight*

Tip: This rendering type hides the significance of the root
node and emphasizes clusters, thereby making it useful
for visually assessing clusters and detecting outliers.

3 Select the Display Labels you want on your figure. You can select from all to none
of the options.
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+ Branch Nodes — Display branch node names on the figure.
+ Leaf Nodes — Display leaf node names on the figure.
Terminal Nodes — Display terminal node names on the right border.
4  Click the Print button.

A new Figure window opens with the characteristics you selected.
Print Preview Command

When you print from the Phylogenetic Tree app or a MATLAB Figure window (with a
tree published from the viewer), you can specify setup options for printing a tree.

1 From the File menu, select Print Preview.

The Print Preview window opens, which you can use to select page formatting
options.
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2 Select the page formatting options

Print Command

and values you want, and then click Print.

Use the Print command to make a copy of your phylogenetic tree after you use the Print

Preview command to select formatting options.
1 From the File menu, select Print.

The Print dialog box opens.

2 From the Name list, select a printer, and then click OK.

Tools Menu

Use the Tools menu to:

* Explore branch paths
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* Rotate branches
* Find, rename, hide, and prune branches and leaves.
The Tools menu and toolbar contain most of the commands specific to trees and

phylogenetic analysis. Use these commands and modes to edit and format your tree
interactively. The Tools menu commands are:

Phylogenetic Tree 1

File | Tools | Window  Help

Hy S Inspect

Collapse/Expand
Rotate Branch
Rename

Prune

Zoom In

Zoom Cut

Pan

Select L
Find Leaf/Branch...
Collapse Selected
Expand Selected
Expand All

Fit to Window
Reset View

Options 2

Inspect Mode

Viewing a phylogenetic tree in the Phylogenetic Tree app provides a rough idea of
how closely related two sequences are. However, to see exactly how closely related
two sequences are, measure the distance of the path between them. Use the Inspect
command to display and measure the path between two sequences.
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Select Tools > Inspect, or from the toolbar, click the Inspect Tool Mode icon %I

The app is set to inspect mode.

Click a branch or leaf node (selected node), and then hover your cursor over another
branch or leaf node (current node).

The app highlights the path between the two nodes and displays the path length
in the pop-up window. The path length is the patristic distance calculated by the
seqpdist function.

O :IthI’iJ_HF\I.'Z.’CIJH-'Z.’:’ i

m CDY7_MOUSEMS2E6-TTT

T HEIsARIE A A T2

a Path lencgth; 0.55444

o Selected node: EMRT _HUMARS99-551
—————————n Current node:  CDO7_MOUSEMSZE-77Y

Collapse and Expand Branch Mode

Some trees have thousands of leaf and branch nodes. Displaying all the nodes can
create an unreadable tree diagram. By collapsing some branches, you can better see the
relationships between the remaining nodes.

1

Select Tools > Collapse/Expand, or from the toolbar, click the Collapse/Expand
Brand Mode icon il

The app is set to collapse/expand mode.

Point to a branch.

The paths, branch nodes, and leaf nodes below the selected branch appear in gray,
indicating you selected them to collapse (hide from view).

|—‘I I_‘

Branch 11 (3 samples) _t@ @
GLP1 RATA41-409

GIPR HURAMA34-359
GLR HUMAMNA3G-407

L .
Click the branch node.

gooooooo
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The app hides the display of paths, branch nodes, and leaf nodes below the selected
branch. However, it does not remove the data.

gooo o

4 To expand a collapsed branch, click it or select Tools > Reset View.

Tip: After collapsing nodes, you can redraw the tree by selecting Tools > Fit to Window.

Rotate Branch Mode

A phylogenetic tree is initially created by pairing the two most similar sequences and
then adding the remaining sequences in a decreasing order of similarity. You can rotate
branches to emphasize the direction of evolution.

1 Select Tools > Rotate Branch, or from the toolbar, click the Rotate Branch Mode

icon @I

The app is set to rotate branch mode.

2 Point to a branch node.

1
Branch 11 (3 samples) _ﬁk @
GLP1 RATA41-403
GIPR HURMANA34-329
GLR HUKARNA 33-407

goooooo

3 Click the branch node.

Il ®
Branch 11 (3 samples) _k
GIPR HLURMANMM34-359
GLR HUMAN3S-407 ——®

GLP1 RAT/A141-409

I I I . [

oooooooon
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The branch and leaf nodes below the selected branch node rotate 180 degrees around
the branch node.

4  To undo the rotation, simply click the branch node again.

Rename Leaf or Branch Mode

The Phylogenetic Tree app takes the node names from a phytree object and creates
numbered branch names starting with Branch 1. You can edit any of the leaf or branch
names.

1

Select Tools > Rename, or from the toolbar, click the Rename Leaf/Branch Mode
T
icon il

The app is set to rename mode.

Click a branch or leaf node.

bl | Lo I By W T R I L N

Branch 14 SRE HURMAMM 38-391
CALR RATI145-435
CALR PIGH14B-415
CRF1 RATHM1E-370
CRF2 XEMLAM 15-268

_|
s
— %

ooocC

A text box opens with the current name of the node.

In the text box, edit or enter a new name.

i 1 e 5 I ) LY P e P
—] CALR SRR HUMARN138-291

— & u 4 LALR RAT/145-435
o - CALR PIG/146-415
o {CRF1 RAT/16-370

0 1 CREZXENLA/TTS-368

To accept your changes and close the text box, click outside of the text box. To save
your changes, select File > Save As.

Prune (Delete) Leaf or Branch Mode

Your tree can contain leaves that are far outside the phylogeny, or it can have duplicate
leaves that you want to remove.
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1 Select Tools > Prune, or from the toolbar, click the Prune (delete) Leaf/Branch
Mode icon ﬁl

The app is set to prune mode.

2 Point to a branch or leaf node.

MTH DROMES11-480

loooooon

*

For a leaf node, the branch line connected to the leaf appears in gray. For a branch
node, the branch lines below the node appear in gray.

Note: If you delete nodes (branches or leaves), you cannot undo the changes. The
Phylogenetic Tree app does not have an Undo command.

3 Click the branch or leaf node.

The tool removes the branch from the figure and rearranges the other nodes to
balance the tree structure. It does not recalculate the phylogeny.

Tip: After pruning nodes, you can redraw the tree by selecting Tools > Fit to Window.

Zoom In, Zoom Out, and Pan Commands

The Zoom and Pan commands are the standard controls for resizing and moving the
screen in any MATLAB Figure window.

1
Select Tools > Zoom In, or from the toolbar, click the Zoom In icon gl

The app activates zoom in mode and changes the cursor to a magnifying glass.
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2  Place the cursor over the section of the tree diagram you want to enlarge and then
click.

The tree diagram doubles its size.

o -

&1%::

From the toolbar click the Pan icon ﬂl

4 Move the cursor over the tree diagram, left-click, and drag the diagram to the
location you want to view.

Tip: After zooming and panning, you can reset the tree to its original view, by selecting
Tools > Reset View.

Select Submenu

Select a single branch or leaf node by clicking it. Select multiple branch or leaf nodes by
Shift-clicking the nodes, or click-dragging to draw a box around nodes.

Use the Select submenu to select specific branch and leaf nodes based on different
criteria.

+ Select By Distance — Displays a slider bar at the top of the window, which you
slide to specify a distance threshold. Nodes whose distance from the selected node are
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below this threshold appear in red. Nodes whose distance from the selected node are
above this threshold appear in blue.

* Select Common Ancestor — For all selected nodes, highlights the closest common
ancestor branch node in red.

* Select Leaves — If one or more nodes are selected, highlights the nodes that are leaf
nodes in red. If no nodes are selected, highlights all leaf nodes in red

+ Propagate Selection — For all selected nodes, highlights the descendant nodes in
red.

+ Swap Selection — Clears all selected nodes and selects all deselected nodes.

After selecting nodes using one of the previous commands, hide and show the nodes using
the following commands:

+ Collapse Selected
+ Expand Selected
+ Expand All

Clear all selected nodes by clicking anywhere else in the Phylogenetic Tree app.
Find Leaf or Branch Command

Phylogenetic trees can have thousands of leaves and branches, and finding a specific
node can be difficult. Use the Find Leaf/Branch command to locate a node using its
name or part of its name.

1 Select Tools > Find Leaf/Branch.

The Find Leaf/Branch dialog box opens.

x|

Find Leaf/Branch

Fegular Expression to match ?

)24 Cancel | %

2 Inthe Regular Expression to match box, enter a name or partial name of a
branch or leaf node.
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3 Click OK.
The branch or leaf nodes that match the expression appear in red.

After selecting nodes using the Find Leaf/Branch command, you can hide and show the
nodes using the following commands:

+ Collapse Selected
+ Expand Selected
+ Expand All

Collapse Selected, Expand Selected, and Expand All Commands

When you select nodes, either manually or using the previous commands, you can then
collapse them by selecting Tools > Collapse Selected.

The data for branches and leaves that you hide using the Collapse/Expand or Collapse
Selected command are not removed from the tree. You can display selected or all hidden
data using the Expand Selected or Expand All command.

Fit to Window Command

After you hide nodes with the collapse commands, or delete nodes with the Prune
command, there can be extra space in the tree diagram. Use the Fit to Window
command to redraw the tree diagram to fill the entire Figure window.

Select Tools > Fit to Window.
Reset View Command

Use the Reset View command to remove formatting changes such as collapsed branches
and zooms.

Select Tools > Reset View.
Options Submenu
Use the Options command to select the behavior for the zoom and pan modes.

* Unconstrained Zoom — Allow zooming in both horizontal and vertical directions.

* Horizontal Zoom — Restrict zooming to the horizontal direction.
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* Vertical Zoom (default) — Restrict zooming to the vertical direction.
* Unconstrained Pan — Allow panning in both horizontal and vertical directions.
* Horizontal Pan — Restrict panning to the horizontal direction.

* Vertical Pan (default) — Restrict panning to the vertical direction.

Window Menu

This section illustrates how to switch to any open window.

The Window menu is standard on MATLAB interfaces and Figure windows. Use this
menu to select any opened window.

Help Menu

This section illustrates how to select quick links to the Bioinformatics Toolbox
documentation for phylogenetic analysis functions, tutorials, and the Phylogenetic
Tree app reference.

Use the Help menu to select quick links to the Bioinformatics Toolbox documentation for
phylogenetic analysis functions, tutorials, and the phytreeviewer reference.
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